Target Terapi Potensial Terkini pada Keganasan Kulit

Arridha Hutami Putri

Abstract


Cancer stem cell (CSC) merupakan sel kanker tertentu yang menunjukkan sifat seperti stem cell (SC) dan mampu memicu atau menginisiasi tumor sehingga sering disebut "sel pemicu tumor". Identifikasi sel primer asal kanker dan penanda CSC sangat penting untuk pengembangan terapi terbaru yang tidak mengenai sel normal, tetapi dapat mempengaruhi sifat sel tumornya. Pada SCs melanoma terdapat banyak penanda seperti CD133, CD44, nestin, TERT dan transporter ABC seperti MDR-1, ABCG2 dan ABCB5. Pertumbuhan sel-sel keganasan dan metastasis pada kulit didorong oleh populasi kecil CSC yang dapat berasal dari populasi SC membran basal dan folikel rambut. Meskipun kemoterapi yang tersedia saat ini dapat meminimalisasir metastasis, namun bersifat sementara dan tidak memperpanjang umur pasien. Kegagalan terapi diduga kuat akibat resistensi obat terhadap sel-sel kanker atau kegagalan membunuh CSC secara efektif. Oleh karena itu, terapi yang menargetkan CSC pada keganasan kulit dapat berpotensi membantu menekan sel tumor disamping tatalaksana utama.

 


Keywords


Cancer stem cell, Sel pemicu tumor, Penanda CSC, Keganasan kulit, Target terapi.

Full Text:

PDF

References


DAFTAR PUSTAKA

Weissman IL. Stem cells: units of development, units of regeneration, and units in evolution. Cell 2000; 100: 157–168.

Gonzalez MA, Bernad A. Characteristics of adult stem cells. Adv Exp Med Biol 2012; 741: 103–120.

Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nature Med. 1997; 3, 730–737 .

Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. nature. 2001 Nov; 414(6859) :105.

Kummermehr J, Trott KR. in Stem Cells (ed. Potten, C. S.) Academic, New York, 1997; 363–399.

Stockler, M., Wilcken, N. R. C., Ghersi, D. & Simes, R. J. Systematic reviews of chemotherapy and endocrine therapy in metastatic breast cancer. Cancer Treatment Rev. 2000. 26; 151–168.

Lippman, M. E. High-dose chemotherapy plus autologous bone marrow transplantation for metastatic breast cancer. N. Engl. J. Med. 342, 1119–1120 (2000).

Jian Z, Strait A, Jimeno A, Wang XJ. Cancer stem cells in squamous cell carcinoma. Journal of Investigative Dermatology. 2017 Jan 1; 137(1):31-7.

Abbas O, Mahalingam M. Epidermal stem cells: practical perspectives and potential uses. Br J Dermatol 2009; 161: 228–236.

Mascré G, Dekoninck S, Drogat B et al. Distinct contribution of stem and progenitor cells to epidermal maintenance. Nature 2012; 489: 257–262.

Goldstein J, Horsley V. Home sweet home: skin stem cell niches. Cell Mol Life Sci 2012; 69: 2573–2582.

Zuk PA, Zhu M, Ashjian P et al. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 2002; 13: 4279–4295.

Boquest AC, Collas P. Obtaining freshly isolated and cultured mesenchymal stem cells from human adipose tissue. Methods Mol Biol 2012; 879: 269–278.

Gerdes MJ, Yuspa SH. The contribution of epidermal stem cells to skin cancer. Stem Cell Reviews. 2005 Sep 1; 1(3):225-31.

Morris RJ, Tryson KA, Wu KQ. Evidence that the epidermal targets of carcinogen action are found in the interfollicular epidermis or infundibulum as well as in the hair follicles. Cancer research. 2000 Jan 15; 60(2):226-9.

Liu Y, Lyle S, Yang Z, Cotsarelis G. Keratin 15 promoter targets putative epithelial stem cells in the hair follicle bulge. Journal of Investigative Dermatology. 2003 Nov 1; 121(5):963-8.

White RA, Neiman JM, Reddi A, Han G, Birlea S, Mitra D, Dionne L, Fernandez P, Murao K, Bian L, Keysar SB. Epithelial stem cell mutations that promote squamous cell carcinoma metastasis. The Journal of clinical investigation. 2013 Oct 1; 123(10):4390-404.

Song J, Chang I, Chen Z, Kang M, Wang CY. Characterization of side populations in HNSCC: highly invasive, chemoresistant and abnormal Wnt signaling. PloS one. 2010 Jul 6; 5(7):e11456.

Bose B, Shenoy SP. Stem cell versus cancer and cancer stem cell: intricate balance decides their respective usefulness or harmfulness in the biological system. J Stem Cell Res Ther. 2014; 4:173.

Boumahdi S, Driessens G, Lapouge G, Rorive S, Nassar D, Le Mercier M, et al. SOX2 controls tumour initiation and cancer stem-cell functions in squamous-cell carcinoma. Nature. 2014; 511:246-50.

Lim W, Choi H, Kim J, Kim S, Jeon S, Ni K, et al. Expression of cancer stem cell marker during 4-nitroquinoline 1-oxide-induced rat tongue carcinogenesis. J Mol Histol. 2014; 45:653-63.

Takebe N, Harris PJ, Warren RQ, Ivy SP. Targeting cancer stem cells by inhibiting Wnt, Notch and Hedgehog pathways. Nat Rev Clin Oncol 2011; 8: 97–106.

Singh R, Chen C, Phelps RG, Elston DM. Stem cells in the skin and their role in oncogenesis. Journal of the European Academy of Dermatology and Venereology. 2014 May;28(5):542-9.

Lim W, Choi H, Kim J, Kim S, Jeon S, Ni K, et al. Expression of cancer stem cell marker during 4-nitroquinoline 1-oxide-induced rat tongue carcinogenesis. J Mol Histol. 2014; 45:653-63.

Peterson SC, Eberl M, Vagnozzi AN, Belkadi A, Veniaminova NA, Verhaegen ME, Bichakjian CK, Ward NL, Dlugosz AA, Wong SY. Basal cell carcinoma preferentially arises from stem cells within hair follicle and mechanosensory niches. Cell stem cell. 2015 Apr 2;16(4):400-12.

Grachtchouk M, Pero J, Yang SH, Ermilov AN, Michael LE, Wang A, Wilbert D, Patel RM, Ferris J, Diener J, et al. Basal cell carcinomas in mice arise from hair follicle stem cells and multiple epithelial progenitor populations. J Clin Invest. 2011; 121:1768–1781. [PubMed: 21519145].

Adolphe C, Nieuwenhuis E, Villani R, Li ZJ, Kaur P, Hui CC, Wainwright B. Patched1 and Patched2 redundancy plays a key role in regulating epidermal differentiation. J Invest Dermatol. 2014; 134:1981–1990. [PubMed: 24492243].

Magnoni C, Giudice S, Pellacani G et al. Stem cell properties in cell cultures from different stage of melanoma progression. Appl Immunohistochem Mol Morphol 2013; 22: 1–11.

Keshet GI, Goldstein I, Itzhaki O et al. MDR1 expression identifieshuman melanoma stem cells. Biochem Biophys Res Commun 2008; 368:930–936.

Monzani E, Facchetti F, Galmozzi E et al. Melanoma contains CD133 and ABCG2 positive cells with enhanced tumourigenic potential. Eur J Cancer. 2007; 43: 935–946.

Feuerhake, F., Sigg, W., Hofter, E. A., Dimpfl, T. & Welsch, U. Immunohistochemical analysis of Bcl-2 and Bax expression in relation to cell turnover and epithelial differentiation markers in the nonlactating human mammary gland epithelium. Cell Tissue Res. 299, 47–58 (2000).

Zhou, S. et al. The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nature Med. 7, 1028–1034 (2001).

Terskikh, A. V. et al. From hematopoiesis to neuropoiesis: evidence of overlapping genetic programs.Proc. Natl Acad. Sci. USA 98, 7934–7939. (2001).

Holland JD, Klaus A, Garratt AN and Birchmeier W. Wnt signaling in stem and cancer stem cells. Curr Opin Cell Biol. 2013; 25:254-264.

Wang T, Shigdar S, Gantier MP, Hou Y, Wang L, Li Y, Al Shamaileh H, Yin W, Zhou SF, Zhao X, Duan W. Cancer stem cell targeted therapy: progress amid controversies. Oncotarget. 2015 Dec 29; 6(42):44191.

Mimeault M, Batra SK. Recent advances on skin‐resident stem/progenitor cell functions in skin regeneration, aging and cancers and novel anti‐aging and cancer therapies. Journal of cellular and molecular medicine. 2010 Jan;14 (1‐2):116-34.




DOI: http://dx.doi.org/10.30596%2Fjih.v2i2.9087

Refbacks

  • There are currently no refbacks.