RELE

(Rekayasa Elektrikal dan Energi) : Jurnal Teknik Elektro Vol. 3, No. 1, Juli 2020, ISSN 2622 – 7002

Analisa Aliran Daya Pada Sistem Tenaga Listrik Dengan Metode Fast Decoupled Menggunakan *Software* Etap

Arnawan Hasibuan^{1,2}, Muzamir Isa¹, Mohd Irwan Yusoff², Siti Rafidah Abdul Rahim²

¹Fakultas Teknik Manajemen, Fakultas Ekonomi dan Bisnis,
Universitas Malikussaleh

Jl. Cot Tengku Nie, Reuleut, Muara Batu, Aceh Utara, Indonesia Telp. + (62) 645.41373

²School of Electrical System Engineering,
Universiti Malaysia Perlis, Malaysia

02600 Arau, Perlis, Malaysia Phone: +60 4-988 5601
e-mail: arnawan@unimal.ac.id

Abstrak — Untuk menunjang bertambahnya permintaan energi listrik harus diimbangi dengan peningkatan kualitas energi listrik yang disalurkan. Dengan melakukan suatu analisa terhadap sistem tenaga merupakan salah satu cara untuk meningkatkan kualitas energi listrik, dikarenakan analisa sistem tenaga mencakup beberapa permasalahan utama dalam sistem tenaga. Salah satunya yaitu aliran daya, studi aliran daya dilakukan untuk mendapatkan informasi mengenai aliran daya dan tegangan sistem dalam kondisi operasi tunak.. Untuk menyelesaikan aliran daya, penulis menggunakan software ETAP 12.6 untuk mensimulasikan aliran daya pada 37 bus sistem standar IEEE. Adapun metode aliran daya yang digunakan adalah metode *Fast Decoupled*, maka dapat diketahui aliran daya, daya aktif sebesar 2.338.000 Watt, daya reaktif sebesar 7.771.000 Var, dan. Total drop tegangan pada jaringan 220 kV sebesar 31.9%, nilai losses yang diperoleh dari keseluruhan sistem, untuk daya aktif (P) yaitu sebesar 766.200 Watt, daya reaktif (Q) yaitu sebesar 3.557.200 Var. Bus yang digunakan untuk simulasi ini sebanyak 37 bus, diantaranya 1 untuk bus GH (swing bus)dan sumber daya (Power Grid) diamsusikan sebesar 6.667 Mvasc, 220kV dengan Frekuensi 50 Hz, jaringan yang digunakan yaitu sistem radial.

Kata kunci: Aliran Beban, Etap, Fast Decouple

Abstract — To support the increasing demand for electrical energy, it must be balanced with an increase in the quality of electrical energy supplied. By conducting an analysis of the power system is one way to improve the quality of electrical energy, because the power system analysis covers several major problems in the power system. One of them is power flow. A power flow study is conducted to obtain information about the power flow and system voltage under steady operating conditions. To solve the power flow, the authors use ETAP 12.6 software to simulate power flow on 37 buses of the IEEE standard system. The power flow method used is the Fast Decoupled method, it can be seen that the power flow, active power is 2,338,000 Watts, reactive power is 7,771,000 Var, and. The total voltage drop on the 220 kV network is 31.9%, the value of losses obtained from the whole system, for active power (P) is 766,200 Watts, reactive power (Q) is 3,557,200 Var. There are 37 buses used for this simulation, including 1 for the GH (swing bus) and power grid (Power Grid) buses which are used for 6,667 Mvasc, 220kV with a frequency of 50 Hz, the network used is a radial system.

Keywords: Power Flow, Etap, Fast Decouple

I. PENDAHULUAN

Untuk menunjang bertambahnya permintaan energi listrik harus diimbangi dengan peningkatan kualitas energi listrik yang disalurkan. Dengan melakukan suatu analisa terhadap sistem tenaga merupakan salah satu cara untuk meningkatkan kualitas energi listrik, dikarenakan analisa sistem tenaga mencakup beberapa permasalahan utama dalam sistem tenaga yaitu aliran beban, hubung singkat, stabilitas dan pengaman. Keempat masalah tersebut adalah faktor penting untuk meningkatkan kualitas energi listrik yang disalurkan [1].

Studi aliran daya ialah analisis yang digunakan untuk menentukan dan menghitung tegangan, arus, daya, dan faktor daya atau daya reaktif yang terdapat pada berbagi titik dalam suatu jaringan listrik pada keadaan pengoperasian normal, baik yang sedang berjalan maupun yang diharapkan akan terjadi di masa yang akan datang. Analisa aliran daya sangat penting dalam perencanaan pengembangan suatu sistem tersebut banyak tergantung pada efek interkoneksi dengan sistem tenaga yang lain, beban yang baru, stasiun pembangkit baru, serta saluran transmisi baru, sebelum semuanya dipasang [2] [3]. Dengan studi semacam ini akan menjamin bahwa

sistem tenaga yang baru dapat memenuhi kebutuhan listrik secara ekonomis, efesien dan aman.

Untuk mendapatkan hasil yang diinginkan dalam studi aliran daya pada sistem tenaga listrik ini dikenal beberapa metode, antara lain metode Gauss Seidel, metode Newton Raphson dan metode Fast Decouple. Dalam paper ini akan dipaparkan aliran daya pada 37 bus pada sistem standard *IEEE* menggunakan metode Fast Decouple dengan *software Etap 12.6.0*.

Tujuan dari penulisan paper ini adalah untuk memperkenalkan studi aliran daya dengan metode Fast Decouple dan mengimplementasikan metode Fast Decouple ini dalam suatu perangkat lunak (*software*) yang diaplikasikan pada sistem tenaga listrik.

II. TINJAUAN PUSTAKA

A. 2.1 Aliran Daya

Studi aliran daya atau *load flow study* adalah suatu studi yang mempelajari aliran daya pada suatu sistem kelistrikan dari suatu titik ke titik lain dan tegangan pada bus-bus yang berada pada sistem tersebut. Studi aliran daya merupakan penentuan atau perhitungan tegangan, arus, daya aktif, faktor daya dan daya reaktif yang terdapat pada berbagai titik dalam suatu jaringan sistem tenaga listrik pada keadaan pengoperasian normal, baik yang sedang berjalan maupun yang diharapkan akan terjadi di masa yang akan datang [4]. Studi analisis aliran daya dapat dihitung secara manual maupun menggunakan software computer.

Tujuan dari studi aliran daya, yaitu:

- a. Untuk mengetahui komponen jaringan sistem tenaga listrik pada umumnya.
- b. Mengetahui besarnya tegangan pada setiap bus (rel) dari suatu sistem tenaga listrik.
- Menghitung aliran-aliran daya, baik daya nyata maupun daya reaktif yang mengalir dalam setiap saluran.
- d. Kerugian-kerugian sistem yang optimal.
- e. Perbaikan dan pergantian ukuran konduktor dan tegangan sistem.

Perhitungan aliran daya merupakan suatu alat bantu yang sangat penting untuk mengetahui kondisi operasi sistem. Perhitungan aliran daya pada tegangan, arus dan faktor daya di berbagai simpul suatu jaringan listrik dilakukan pada keadaan operasi normal. Hasil perhitungan aliran daya ini kemudian digunakan untuk mensimulasi kondisi gangguan yang besar, stabilitas transien maupun analisa kontigensi yaitu analisa keadaan dimana sebagian komponen sistem tidak terhubung ke sistem dengan baik.

Perhitungan aliran daya membutuhkan informasi ramalan kebutuhan bebas di setiap titik

pelayanan, rencana operasi pusat pembangkit dan rencana operasi fasilitas tranmisi. Dan informasi diatas dapat disusun persamaan aliran daya dari satu Gardu Induk ke Gardu Induk lainnya.

Aliran daya adalah studi yang dilaksakan untuk mendapatkan informasi mengenai aliran daya atau tegangan sistem dalam kondisi operasi lunak. Informasi ini sangat dibutuhkan guna mengevaluasi unjuk kerja sistem tenaga dan menganalisa kondisi pembangkitan maupun pembebanan. Analisis ini memerlukan pula informasi aliran dalam kondisi normal maupun darurat.

Masalah aliran daya mencakup perhitungan aliran dan tegangan sistem pada terminal tertentu. Representasi tunggal selalu dilakukan karena sistem di anggap seimbang.

Tujuan aliran daya adalah untuk mengetahui besar vektor tegangan pada tiap bus dan besar aliran daya pada tiap cabang suatu jaringan untuk suatu kondisi beban tertentu dalam kondisi normal. Hasil perhitungan dapat digunakan untuk menelaah berbagai persoalan yang berhubungan dengan jaringan tersebut, yaitu meliputi hal – hal yang berhubungan dengan operasi jaringan yaitu:

- 1. Pengaturan tegangan (*voltage regulation*), perbaikan faktor daya (*power factor*) jaringan, kapasitas kawat penghantar, termasuk rugi rugi daya.
- Perluasan atau pengembangan jaringan, yaitu menentukan lokasi yang tepat untuk penambahan bus beban baru dan unit pembangkitan atau gardu induk baru.
- Perencanaan jaringan, yaitu kondisi jaringan yang diinginkan pada masa mendatang untuk melayani pertumbuhan beban karena kenaikan terhadap kebutuhan tenaga listrik.

Dalam Studi Aliran Daya dikenal berbagai Bus, yaitu [5] :

1. Bus referensi (slack bus atau swing bus)

Slack bus berfungsi untuk mencatu rugirugi dan kekurangan daya aktif dan reaktif pada jaringan. Karena itu bus yang biasa digunakan adalah bus yang berdaya besar, dimana tegangan dan sudut fasanya diketahui.

- a. Terhubung dengan generator.
- b. V dan sudut fasa dari generator diketahui dan tetap.
- c. P dan Q dihitung.
- 2. Generator bus (bus pembangkitan) atau (P-V bus)

Generator bus atau Voltage Generator bus berfungsi tidak hanya untuk pengontrol tegangan akan tetapi juga dapat menambah daya dalam sistem karena bus ini paling kurang terkoneksi dengan 1 buah generator.

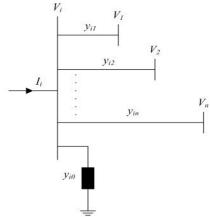
- a. Terhubung dengan generator.
- b. P dan V dari generator diketahui dan tetap
- c. Sudut fasa dan Q dari daya reaktif generator dihitung.

3. Bus pembebanan (P-Q bus)

Bus pembebanan atau yang biasa juga disebut sebagai Load bus adalah bus beban yang memiliki besaran nilai daya aktif (P) dan daya reaktif (Q) yang diketahui. Pada bus ini tidak ada generator yang terkoneksi melainkan hanya terkoneksi dengan beban saja.

- a. Terhubung dengan generator.
- b. P dan V dari generator diketahui dan tetap
- c. V dan sudut fasa tegangan di hitung.

2.1. Konsep Perhitungan Aliran Daya


Perhitnugan aliran daya pada dasarnya adalah menghitung besaran tegangan |V| dan susdut fasa tegangan δ pada setiap G.I pada kondisi tunak dan kondisi fasa tidak seimbang. Hasil perhitungan ini digunakan untuk menghitung besar aliran daya aktif P dan daya reaktif Q di setiap peralatan transmisi, besaran daya aktif P dan daya reaktif Q yang harus dibangkitkan disetiap pusat pembangkitan serta jumlah rugi-rugi di sistem.

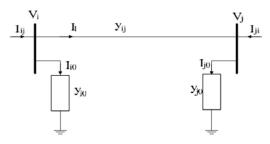
Pada setiap bus ada 4 variable operasi yang terkait, yaitu daya aktif P, reaktif Q, besaran tegangan |V| dan sudut fasa tegangan δ . Agar persamaan aliran daya dapat dihitung, 2 dari 4 variable di atas harus diketahui untuk setiap bus, sedangkan 2 variable lainnya dihitung.

2.2. Persamaan Aliran Daya

Sistem tenaga listrik tidak hanya terdiri dari dua bus, melainkan terdiri dari beberapa bus yang akan diinterkoneksi satu sama lain [6]. Daya listrik yang diinjeksikan oleh generator kepada salah satu bus, bukan hanya dapat diserap oleh beban bus tersebut, melainkan dapat juga diserap oleh beban dibus yang lain. Kelebihan daya pada bus akan dikirimkan melalui saluran tranmisi ke bus-bus yang lain yang kekurangan daya.

Diagram satu garis tipe bus dari suatu sistem tenaga listrik terdapat pada Gambar 1.

Gambar 1. Diagram satu garis tipe bus dari sistem tenaga listrik.


Arus pada bus ke i [7] adalah : $I_{i} = V_{i} \sum_{j=0}^{n} y_{ij} \cdot \sum_{j=i}^{n} y_{ij} V_{j} \text{ dimana j} \neq \text{i (1)}$ Persamaan daya pada bus ke i adalah : $P_{i} + jQ_{i} = V_{i} I_{i} * \dots (2)$ Atau $I_{i} = \frac{P^{i-j}}{V^{i*}} \qquad (3)$

Dengan mensubtitusikan persamaan (3) ke persamaan (1) diperoleh :

$$\frac{Pi-jQ}{Vi^*} = V_i \sum_{j=0}^n y_{ij} \cdot \sum_{j=i}^n y_{ij} V_j \text{ dimana } j \neq i \dots (4)$$

2.3. Rugi-rugi Daya Pada Saluran

Rugi-rugi daya pada saluran dapat direpresentasikan berdasarkan Gambar 2.

Gambar 2. Diagram representasi rugi-rugi daya

Dari Gambar 2 di atas dapat dinyatakan bahwa arus yang mengalir dari i ke j adalah:

$$I_{i_1} = I_l + I_{i0} = y_{i_1} (V_i - V_j) + y_{i0} V_j$$
(5)

Begitu pula sebaliknya, arus yang mengalir dari j ke i dapat dinyatakan dengan:

$$I_{j_i} = -I_l + I_{j0} = y_{i_i} (V_j - V_i) + y_{j0} V_j$$
 ... (6)

Daya semu S_i dari bus i ke j dan dari S_i bus j ke i yang terjadi pada konduktor adalah:

$$S_{i} = V_{i}I_{*I} \dots (7)$$

$$S_{j=}V_{i}I_{*j}...$$
 (8)

Rugi - rugi daya yang terjadi dari i ke j secara aljabar dapat ditulis sebagai berikut:

$$S_{Li} = S_i + S_j \dots (9)$$

Dengan begitu, untuk menghitung nilai rugirugi secara keseluruhan dari jaringan dapat dihitung dengan menjumlahkan seluruh rugi-rugi yang diperoleh pada setiap saluran.

$$S_L = \sum_{\substack{i=1\\j=i+1}}^n S_i \quad ; (i\neq j).....(10)$$
 2.4. Susut Tegangan

Apabila melalui saluran listrik (hantaran udara atau kabel tanah) disalurkan arus listrik, maka akan di alami susut tegangan pada saluran akibat adanya impedansi saluran. Susut tegangan ini perlu dihitung menjamin bahwa tegangan pelayanan dikonsumen terujung tidak dibawah batas minimum yang di ijinkan.

Tegangan adalah suatu besaran listrik yang dipasok dari pembangkit tenaga listrik ke beban melalui gardu induk atau gardu distribusi, perlu mendapat perhatian dan pemasok tenaga listrik, karena peralatan - peralatan listrik yang dipakai pelanggan telah didesain oleh pabrik pembuatnya, sesuai dengan sistem tegangan yang telah distandarkan oleh suatu negara. Penurunan tegangan atau kenaikan tegangan sangat berpengaruh pada peralatan - peralatan listrik, yang dapat memanaskan bahkan dapat merusak peralatan listrik tersebut. Jika tegangan yang dipasok ke beban turun dibawah tegangan nominalnya, dapat berpengaruh peralatan listrik, jadi kestabilan tegangan yang dan pemasok tenaga listrik, dipertahankan. Sesuai SNI tahun 2000, bahwa kenaikan tegangan di Indonesia yang di ijinkan +5% dan penurunan tegangan yang di ijinkan -10%. Artinya jika tegangan 220 Volt kenaikan tegangan sebesar (220 + 5%×220) Volt 231 Volt dan turunnya tegangan yang di ijinkan (220 – 10% ×220) Volt 198 Volt. [8].

Aliran Daya dengan Metode Fast Decoupled

Bentuk matrik jacobian untuk aliran daya V_{imin}≤

$$V_{i} \leq V_{imax} \text{ metode decouple [9] :}$$

$$\begin{bmatrix} \Delta P \\ \Delta Q \end{bmatrix} = \begin{bmatrix} H & 0 \\ 0 & L \end{bmatrix} \begin{bmatrix} \frac{\Delta \delta}{\Delta |V|} \\ \frac{\Delta |V|}{V} \end{bmatrix} \dots (11)$$

Dari matrik diatas didapat dua persamaan berikut:

$$[\Delta P] = [H][\Delta \delta]....(12)$$

$$[\Delta Q] = [L] \left[\frac{[\Delta V]}{V} \right] \dots (13)$$

Dengan elemen dari jacobian untuk H dan L

$$\begin{aligned} & \text{H}_{ii} = \text{L}_{ij} = \frac{\delta pi}{\delta \delta j} = |\text{V}_{i}\text{V}_{j}| \left[\text{Gij sin}[\delta i - \delta j] - \text{Bij Cos} \left[\delta i - \delta j \right] \right] \\ & \text{H}_{ii} = \frac{\delta Pi}{\delta \delta j} = -\sum_{\substack{j=1 \ j \neq i}}^{n} |\text{ViVjYij}| \sin[\theta ij + \delta i - \delta j] \end{aligned}$$

$$=-V_i^2B_{ii}-Q_i....(14)$$

$$\begin{split} L_{ii} &= \frac{\delta Q l |V i|}{\delta V i} = |2V i 2 Y i i| \sin \theta i i + \sum_{\substack{j=1 \\ j \neq i}}^{n} |\sin[\theta i j + \delta i - \delta j] \\ &= V_{i}^{2} B_{ii} + Q_{i}.....(15) \end{split}$$

1) 2.6. Fungsi Obyektif

Fungsi objektif dari aliran daya optimal pada generator guna meminimisasi biaya dengan persamaan biaya dari daya yang dihasilkan generetor

$$C_{poi} = a_i + b_i P_{oi} + C_i P_{oi}^2$$
....(16)

. $C_{pgi}=a_i+b_iP_{gi}+C_iP_{gi}^2$(16) Dimana P_{gi} merupakan daya keluaran pada generator ke i, sehingga fungsi objek adalah penjumlahan biaya dari masing-masing generator yang dapat ditulis sebagai berikut:

$$F(x) = \sum_{i} (ai + biPGi + CiPgi2)....(17)$$

2) Persamaan Kekangan

Persamaan aliran daya Grainger dan stevenson dengan daya aktif dan reaktif pada masing-masing

$$\frac{\partial p}{\partial \delta j} = 0 = -|ViVj|\{Bij\cos(\delta j - \delta i) + Gij\sin(\delta j - \delta i)\} - Pgi + Pdi....(18)$$

$$\begin{aligned} |V| \frac{\partial Qi}{\partial |Vj|} &= 0 = -|ViVj| \{Bij \ Cos \ (\delta j - \delta i) - Gij \ sin(\delta j - \delta i)\} - Qgi + Qdi.....(19) \end{aligned}$$

Dengan persamaan kekangan tegangan:

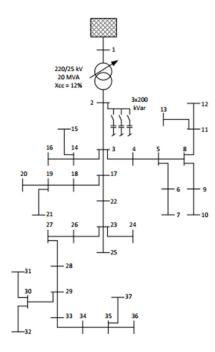
$$V_{Gi}$$
- V_{Gi} set=0....(20)

Pertidaksamaan Kekangan

Daya maksimum dan minimum generator ke bus i:

$$\begin{array}{c} P_{gimin} \!\! \leq \!\! P_{gi} \!\! \leq \!\! P_{gimaks} \\ Q_{gimin} \!\! \leq \!\! Q_{gi} \!\! \leq \!\! Q_{gimaks} \end{array}$$

Perbandingan tap maksimum dan minimum dari perubahan tap transformator yang diinginkan dan perubahan phasa transformator mempunyai nilai maksimum dan minimum dengan pertidaksamaan kekangan:


$$t_{kmmin} \leq t_{km} \leq t_{kmmax} \\ \alpha_{kmmin} \leq \alpha_{km} \leq \alpha_{kmmax}$$

Guna mempertahan kualitas pelayanan listrik dan keamanan sistem. Tegangan bus mempunyai besaran maksimum. Batas dari pertidaksamaan kekangan adalah:

$$V_{imin} \leq V_i \leq V_{imax}$$

III. METODE

Penelitian ini dilakukan di Laboratorium Teknik Elektro Universitas Malikussaleh dengan objek yang diuji adalah sistem standar *IEEE* 37 bus yang selanjutnya disimulasi dengan *software* ETAP.

Gambar 2. Konfigurasi jaringan IEEE 37 bus

A. Teknik Pengumpulan Data

Teknik pengumpulan data adalah lapangan. Cara ini penulis lakukan dengan mengumpulkan data – data yang ada pada standar IEEE sistem jaringan 37 bus yaitu sebagai berikut :

Tabel 1. Data Input Beban

N.T.	T	Generator		Beban		Powe	Tip
Nomo r Bus	Teganga n (kV)	P(kW)	Q(kVar)	P(kW)	Q(kVar)	r Facto r	e Bus
1	220	1	-	0	0	1	2
2	25	0	0	0	0	1	3
3	25	0	0	146	66	0,91	0
4	25	0	0	116	56	21.3 6	0
5	25	0	0	146	70	0,9	0
6	25	0	0	87	42	0,9	0
7	25	0	0	194	99	0,89	0
8	25	0	0	340	164	0,9	0
9	25	0	0	456	221	0,9	0
10	25	0	0	349	169	0,9	0
11	25	0	0	514	234	0,91	0

NI T		Generator		Beban		Powe	Tip
Nomo r Bus	Teganga n (kV)	P(kW		`.	Q(kVar	r Facto	e Bus
))))	r	Dus
12	25	0	0	437	224	0,89	0
13	25	0	0	679	329	0,9	0
14	25	0	0	349	169	0,9	0
15	25	0	0	601	308	0,89	0
16	25	0	0	349	169	0,9	0
17	25	0	0	912	442	0,9	0
18	25	0	0	349	159	0,91	0
19	25	0	0	485	235	0,9	0
20	25	0	0	485	248	0,89	0
21	25	0	0	437	211	0,9	0
22	25	0	0	582	282	0,9	0
23	25	0	0	354	171	0,9	0
24	25	0	0	349	169	0,9	0
25	25	0	0	437	224	0,89	0
26	25	0	0	582	282	0,9	0
27	25	0	0	524	223	0,92	0
28	25	0	0	592	287	0,9	0
29	25	0	0	353	171	0,9	0
30	25	0	0	631	323	0,89	0
31	25	0	0	432	221	0,89	0
32	25	0	0	582	314	0,88	0
33	25	0	0	524	268	0,89	0
34	25	0	0	679	348	0,89	0
35	25	0	0	582	314	0,88	0
36	25	0	0	437	236	0,88	0
37	25	0	0	518	265	0,89	0

B. Prosedur Pengolahan Data

Prosedur pengolahan data adalah dengan menggunakan ETAP yang dilakukan pada sistem jaringan 37 bus.

Urutan langkah-langkah dalam menganalisis aliran daya berdasarkan data-data yang ada adalah sebagai berikut :

- 1) Jalankan ETAP
- 2) Pilih menu file pada tampilan ETAP lalu pilih new project
- 3) Lalu akan terlihat tampilan *create new project* dan isi kolom pada "*name*" pada menu dan pastikan *Unit System* yang digunakan adalah "*Metric*", pilih "OK" jika data tersebut telah terisi.
- 4) Setelah itu akan terlihat menu "*User Information*", jika sudah terisi maka pilih tombol "OK"

- 5) Lalu membuat *one-line diagram* pada lembar kerja ETAP 12.6.0
- 6) Setelah itu masukkan sumber ke dalam lembar kosong di monitor dengan cara mengklik *icon* sumber yang akan dipilih, pilih *icon Power Grid*:
- 7) Setelah itu masukkan sumber yang lainnya pilih *Icon Bus*
- 8) Setelah itu masukkan sumber yang lainnya, pilih *icon Transmision Line*.
- 9) Setelah itu masukkan sumber yang lainnya, pilih icon *Trafo*
- 10) Setelah itu masukkan nilai beban pada penyulang dengan cara klik pada *icon Static Load* maka akan muncul pilihan *Loading*, pada menu tersebut terdapat rating beban, persentase LWBP dan persentase WBP yang harus diisi sesuai data yang ada.
- 11) Selanjutnya apabila *single line diagram* tersebut sudah selesai, hasilnya bisa dilihat dengan mengklik *Load Fload Analysis* yang terdapat pada tampilan ETAP 12.6.0
- 12) Setelah itu kita mengklik *Load Fload Analysis* lalu kita harus menentukan metode yang akan kita gunakan dengan memilih options.
- 13) Setelah itu semua dilengkapi maka kita bisa melihat hasilnya dengan memilih *Run Load Flow* pada tampilan, kemudian akan keluar hasilnya

Selanjutnya kita pilih *Display Options* untuk memilih hasil analisis yang kita inginkan.

IV. HASIL DAN PEMBAHASAN

A. Hasil Simulasi

Sistem tenaga listrik merupakan suatu sistem penyaluran energi listrik, dimana energi yang dihasilkan oleh pusat pembangkit tenaga listrik disalurkan ke beban pada tingkat tegangan yang di butuhkan, yaitu tegangan primer (220 kV) dan tegangan sekunder (220/380 volt). Dalam kasus aliran daya bahwa beban dianggap dalam kondisi seimbang dan simulasi aliran daya akan dianalisis pada masing masing bus pada tiap saluran.

Analisis terhadap objek penelitian dilakukan dengan mengadakan pengujian serta melakukan entry data yang diambil dari sistem IEEE 37 bus, untuk menganalisisnya digunakan Electrical Transient Analysis Program 12.0 (ETAP). Perhitungan aliran daya ini dilakukan untuk mengetahui aliran daya, besarnya tegangan, daya aktif dan daya reaktif serta susut daya yang terjadi pada tiap saluran. Hasil

siumlasi dari metode Fast Decoupled diperoleh setelah melakukan iterasi yang ke 2 dalam waktu \pm 2 detik.

Dari analisis dapat diperoleh daya aktif sebesar 17.146.000,000 Watt, daya reaktif sebesar 9.539.000 Var. Total drop tegangan keseluruhan sistem yaitu sebesar 31.9 %, nilai susut daya yang diperoleh dari keseluruhan sistem, untuk daya aktif (P) yaitu sebesar 766.100 Watt, daya reaktif (Q) yaitu sebesar 3.557.200 Var. Bus yang digunakan untuk simulasi ini sebanyak 37 bus dan sumber daya (Power Grid) diamsusikan sebesar Mvasc, 220kV dengan Frekuensi 50 Hz, jaringan yang digunakan yaitu sistem radial.

B. Drop Tegangan

Drop Tegangan pada standar IEEE sistem jaringan 37 bus dapat dilihat pada tabel dibawah ini.

Tabel 2. Drop Tegangan pada tiap saluran

- 140	C1 2. D10p	regangan pada n	up su	urum
No	Line	BUS	Arus	Vd(V)
			(A)	
1	-	Bus 1 ke Bus 2	51,8	
1	Line 1	Bus 2 ke Bus 3	461,7	2,22
2	Line 3	Bus 3 ke Bus 4	94,8	0,57
3	Line 4	Bus 4 ke Bus 5	91,6	0,54
4	Line 5	Bus 5 ke Bus 6	8,0	0,03
5	Line 6	Bus 6 ke Bus 7	5,6	0,02
6	Line 7	Bus 5 ke Bus 8	79,5	0,68
7	Line 8	Bus 8 ke Bus 9	23,1	0,02
8	Line 9	Bus 9 ke Bus 10	10,0	0,01
9	Line 10	Bus 8 ke Bus 11	46,8	0,18
10	Line 11	Bus 11 ke Bus 12	12,7	0,01
11	Line 12	Bus 11 ke Bus 13	19,5	0,01
12	Line 13	Bus 3 ke Bus 14	36,7	0,05
13	Line 14	Bus 14 ke Bus 15	17,1	0,03
14	Line 15	Bus 14 ke Bus 16	9,8	0,03
15	Line 16	Bus 3 ke Bus 17	326,3	0,74
16	Line 17	Bus 17 ke Bus 18	54,0	0,38
17	Line 18	Bus 18 ke Bus 19	44,3	0,38
18	Line 19	Bus 19 ke Bus 20	13,9	0,09
19	Line 20	Bus 19 ke Bus 21	16,6	0,1
20	Line 21	Bus 17 ke Bus 22	246,5	1,46
21	Line 23	Bus 22 ke Bus 23	229,8	0,84
22	Line 24	Bus 23 ke Bus 24	10,1	0,03
23	Line 26	Bus 23 ke Bus 25	12,8	0,07
24	Line 28	Bus 23 ke Bus 26	196,6	1,23

No	Line	BUS	Arus (A)	Vd(V)
25	Line 29	Bus 26 ke Bus 27	179,5	0,66
26	Line 30	Bus 27 ke Bus 28	164,4	1,15
27	Line 32	Bus 28 ke Bus 29	146,6	0,49
28	Line 33	Bus 29 ke Bus 30	50,6	0,29
29	Line 34	Bus 30 ke Bus 31	13,2	0,12
30	Line 35	Bus 30 ke Bus 32	18,1	0,13
31	Line 36	Bus 29 ke Bus 33	85,3	0,47
32	Line 37	Bus 33 ke Bus 34	69,2	0,74
33	Line 38	Bus 34 ke Bus 35	48,2	0,39
34	Line 39	Bus 35 ke Bus 36	13,8	0,08
35	Line 40	Bus 35 ke Bus 37	16,1	0,07

Persentase drop tegangan yang diizinkan untuk jaringan adalah +5 %. Perhitungan drop tegangan secara simulasi dengan menggunakan ETAP, pada tegangan menengah 220 kV (100 %), bus yang mengalami drop tegangan ≥5% (Nilai nyata 95% dari 220 kV) atau mengalami kelebihan tegangan (over voltage) sebesar ≥5% (nilai nyata 105% dari 220 kV) dianggap tidak aman bagi sistem.

Dari hasil simulasi yang di dapat pada Tabel 2 terlihat bahwa kondisi tegangan dari tiap-tiap bus mengalami penurunan, tetapi besarnya masih berada dalam batas yang telah ditentukan, yaitu sebesar -10% sampai +5% dari nilai tegangan dasar dan dapat diketahui bahwa nilai tegangan yang paling rendah terjadi pada saluran 39 yaitu penghubung antara dari bus 35 ke bus 36 dan pada saluran 40 yaitu penghubung antara daari bus35 ke bus37 yaitu sebesar 20,782 Volt.

C. 4.4 Susut Daya (Losses)

Susut daya pada standar IEEE sistem jaringan 37 bus dapat dilihat pada tabel dibawah ini.

Tabel 3. Susut daya dari tiap saluran pada 37 bus

No	Line	Dari – Ke	Daya Aktif (kW)	Daya Reaktif (kVar)
1	-	Bus 1 ke Bus 2	116,6	2332,6
1	Line 1	Bus 2 ke Bus 3	177,9	600,5
2	Line 3	Bus 3 ke Bus 4	15,1	17,7
3	Line 4	Bus 4 ke Bus 5	14,0	16,2
4	Line 5	Bus 5 ke Bus 6	0,1	-2,6
5	Line 6	Bus 6 ke Bus 7	0,0	-2,5
6	Line 7	Bus 5 ke Bus 8	15,3	16,2

No	Line	Dari – Ke	Daya Aktif (kW)	Daya Reaktif (kVar)
7	Line 8	Bus 8 ke Bus 9	0,1	-0,4
8	Line 9	Bus 9 ke Bus 10	0,0	-1,0
9	Line 10	Bus 8 ke Bus 11	2,4	0,7
10	Line 11	Bus 11 ke Bus 12	0,1	-0,7
11	Line 12	Bus 11 ke Bus 13	0,1	-0,4
12	Line 13	Bus 3 ke Bus 14	0,5	-0,2
13	Line 14	Bus 14 ke Bus 15	0,1	-0,9
14	Line 15	Bus 14 ke Bus 16	0,0	-2,1
15	Line 16	Bus 3 ke Bus 17	53,7	120,8
16	Line 17	Bus 17 ke Bus 18	3,2	1,9
17	Line 18	Bus 18 ke Bus 19	4,7	0,8
18	Line 19	Bus 19 ke Bus 20	0,4	-4,1
19	Line 20	Bus 19 ke Bus 21	0,5	-3,7
20	Line 21	Bus 17 ke Bus 22	99,4	141,3
21	Line 23	Bus 22 ke Bus 23	53,4	75,7
22	Line 24	Bus 23 ke Bus 24	0,1	-2,2
23	Line 26	Bus 23 ke Bus 25	0,2	-3,2
24	Line 28	Bus 23 ke Bus 26	67,0	93,8
25	Line 29	Bus 26 ke Bus 27	32,6	45,3
26	Line 30	Bus 27 ke Bus 28	52,4	72,2
27	Line 32	Bus 28 ke Bus 29	20,0	27,1
28	Line 33	Bus 29 ke Bus 30	4,1	2,4
29	Line 34	Bus 30 ke Bus 31	0,5	-5,2
30	Line 35	Bus 30 ke Bus 32	0,6	-3,4
31	Line 36	Bus 29 ke Bus 33	11,1	12,8
32	Line 37	Bus 33 ke Bus 34	14,1	14,1
33	Line 38	Bus 34 ke Bus 35	5,2	2,8
34	Line 39	Bus 35 ke Bus 36	0,3	-2,9
35	Line 40	Bus 35 ke us 37	0,3	-2,2
	Т	Total	766,1	3557,2

Dari Tabel 3 diketahui bahwa besarnya susut daya pada masing-masing saluran. Susut daya yang paling terbesar terjadi pada saluran 1 yaitu penghubung antara bus 2 ke bus 3sebesar 177.9 KWatt pada daya aktif, pada daya reaktifnya susut daya yang paling terbesar juga terjadi pada penghubung dari bus1 ke bus2 yaitu sebesar 2332,6 Kvar. Susut daya yang paling kecil pada daya aktif (P) terjadi pada saluran 5, saluran 8, saluran 11, saluran 12, saluran 14, saluran 15 dan saluran 24 yaitu sebesar 0.1 Kwatt. Pada daya reaktif susut daya yang paling kecil terjadi pada saluran 29 yaitu sebesar -5.2 Kvar. Tetapi hanya satu saluran yang tidak mengalami susut daya yaitu saluran 9 sedangkan

susut daya total pada saluran adalah 766.1 Kwatt daya aktif (P) dan 3557.2 Kvar daya reaktif (Q).

Analisis Perbandingan

Analisis perbandingan ini dilakukan pada setiap saluran untuk mengetahui selisih antara hasil yang diperoleh secara perhitungan dangan menggunakan software etap, seperti pada Tabel 4.

Tabel 4. Hasil Perbandingan Aliran Daya Pada Tiap Saluran

Lina	Perhitungan		Software Etap	
Line	P(Watt)	Q (Var)	P(Watt)	Q (Var)
3	28898921,310	21674190,990	3365000,000	1651000,000
4	27923430,300	20942572,720	3234000,000	1577000,000
5	2438727,537	1829045,653	281000,000	136000,000
6	1707109,276	1280331,957	194000,000	96000,000
7	24234854,900	18176141,170	2793000,000	1355000,000
8	7041825,763	5281369,322	805000,000	389000,000
9	3048409,421	2286307,066	349000,000	168000,000
10	14266556,090	10699917,070	1632000,000	787000,000
11	3871479,965	2903609,974	437000,000	223000,000
12	5944398,372	4458298,779	679000,000	329000,000
13	11187662,580	8390746,932	1300000,000	643000,000
14	5212780,110	3909585,083	601000,000	307000,000
15	2987441,233	2240580,925	349000,000	167000,000
16	99469599,420	74602199,560	11395000,000	6048000,000
17	16461410,880	12346058,160	1910000,000	919000,000
18	13504453,740	10128340,300	1558000,000	758000,000
19	4237289,096	3177966,822	485000,000	244000,000
20	5060359,639	3795269,730	582000,000	278000,000
21	75143292,240	56357469,180	8519000,000	4567000,000
23	70052448,500	52539336,380	7838000,000	4143000,000
24	3078893,516	2309170,137	349000,000	167000,000
26	3901964,059	2926473,044	437000,000	221000,000
28	59931729,220	44948796,920	6645000,000	3509000,000
29	5471898949,110	41039211,830	5996000,000	3133000,000
30	50115850,890	37586888,160	5439000,000	2865000,000
32	44689682,120	33517261,590	4794000,000	2506000,000
33	15424951,670	11568713,750	1650000,000	852000,000
34	4023900,436	3017925,327	432000,000	216000,000
35	5517621,053	4138215,789	583000,000	311000,000
36	26002932,360	19502199,270	2771000,000	1456000,000
37	21094993,200	15821244,900	2236000,000	1175000,000
38	14693333,410	11020000,060	1543000,000	813000,000
39	4206805,001	3155103,751	437000,000	233000,000
40	4907939,168	3680954,376	518000,000	263000,000

Tabel 5. Hasil Perbandingan Losses

10			bandingan Losses		
Line	Perhitungan O (Var)		Software Etap		
	P(Watt)	Q (Var)	P(Watt)	Q (Var)	
3	4702,055	7187,924	15100,000	17700,000	
4	4353,694	6655,392	14000,000	16200,000	
5	20,755	31,728	100,000	-2600,000	
6	9,831	15,028	0,000	-2500,000	
7	4755,204	7269,172	15300,000	16200,000	
8	41,532	63,489	100,000	-400,000	
9	12,972	19,830	0,000	-1000,000	
10	748,177	1143,721	2400,000	700,000	
11	15,692	23,988	100,000	-700,000	
12	24,663	37,702	100,000	-400,000	
13	145,599	222,574	500,000	-200,000	
14	38,564	58,951	100,000	-900,000	
15	24,917	38,089	0,694	-2100,000	
16	17171,754	40348,512	53700,000	120800,000	
17	1008,703	1541,981	3200,000	1900,000	
18	1463,802	2237,680	4700,000	800,000	
19	109,025	166,664	400,000	-4100,000	
20	147,749	225,860	500,000	-3700,000	
21	31002,844	47393,340	99400,000	141300,000	
23	16668,963	25481,464	53400,000	75700,000	
24	29,774	45,514	100,000	-2200,000	
26	74,387	113,713	200,000	-3200,000	
28	20891,168	31935,851	67000,000	93800,000	
29	10170,386	15547,237	32600,000	45300,000	
30	16945,614	25904,373	52400,000	72200,000	
32	6226,277	9517,967	20000,000	27100,000	
33	1284,236	1963,182	4100,000	2400,000	
34	140,135	214,221	500,000	-5200,000	
35	196,905	301,005	600,000	-3400,000	
36	3460,799	5290,445	11100,000	12800,000	
37	4493,219	6868,682	14100,000	14100,000	
38	1627,402	2487,772	5200,000	2800,000	
39	92,228	140,987	300,000	-2900,000	
40	67,249	102,803	300,000	-2200,000	
	1	,	- /- * *	,	

Pada Tabel 5 dapat dilihat bahwa selisih nilai aliran daya dari hasil perhitungan menggunakan software etap dengan perhitungan manual nilainya jauh berbeda seperti pada

saluran 29 yaitu nilai daya aktif (P) sebesar 5.465.902.949,110 Watt atau 5.465.902,9491 KW, daya reaktif (Q) pada line 16 sebesar 68.554.199,560 Watt atau 68.554,199560 KW. Nilai selisih terkecil daya aktif terdapat pada line 6 yaitu sebesar 1.513.109,276 Watt atau 1513,109276 KW, dan nilai reaktifnya yaitu 1.184.331,957 Watt atau 1.184,331957 KW. Pada Table 5 juga dapat dilihat, hasil yang didapatkan dari antara hasil perhitungan mengunakan sofware dengan hasil perhitungan secara manual selisih nilainya jauh berbeda seperti pada line 21 nilai daya aktif (P) sebesar 68397W atau 68,397 KW dan nilai reaktif (Q) sebesar 93906,660 Watt atau 93,906660 KW. Nilai selisih losses yang paling kecil daya aktif (P) pada line 15 sebesar 24,222 W atau 0,24 KW, dan nilai reaktif(Q) pada line 19 yaitu sebesar 4266,664 Watt atau 4,266664 KW.

V. KESIMPULAN

Dari analisis dapat diperoleh daya aktif sebesar 17.146.000,000 Watt, daya reaktif sebesar 9.539.000 Var. Presentase drop tegangan total keseluruhan Pada 37 bus sistem standar IEEE yaitu sebesar 31.9%. Susut daya terbesar terdapat pada saluran 1 yaitu 177,9 Kwatt dan 600,5 Mvar sedangkan losses terkecil terdapat pada saluran 5 penghubung antara bus 5 ke bus 6 yaitu 0.1 Kwatt dan susut daya reaktif terkecil terdapat pada saluran 29 yaitu -5,2 Mvar.

Hasil simulasi pada software Etap dengan hasil perhitungan terjadi selisih yang besar seperti pada saluran 29 yaitu nilai daya aktif (P) sebesar 5.465.902.949,110 Watt atau 5.465.902,9491 KW, daya reaktif (Q) pada line 16 sebesar 68.554.199,560 Watt atau 68.554,199560 KW.

VI. DAFTAR PUSTAKA

- [1]. D. Sulistiyono, J. WINDARTO, and K. Karnoto, "Perbandingan Metode Gauss-Seidel, Metode Newton Raphson Dan Metode Fast Decoupled Dalam Solusi Aliran Daya," Jurusan Teknik Elektro Fakultas Teknik Undip, 2011.
- [2]. Supriyadi, "Analisa Aliran Daya pada Sistem Tenaga Listrik Menggunakan Software Etap 12.6," vol. 06, no. 3, p. 10.
- [3]. G. P. ARITONANG, "STUDI ALIRAN DAYA PADA SISTEM TENAGA LISTRIK MENGGUNAKAN SOFTWARE ETAP 12.6. 0 DI PT CEMINDO GEMILANG SITE BAYAH," Universitas Mercu Buana Jakarta, 2018.
- [4]. J. J. Grainger, "William d. Stevenson, JR.,"," *Power Syst. Anal. McGraw-Hill, Inc*, 1994.
- [5]. S. Rudi Salman, Mustamam, "Simulasi dan Analisis Aliran Daya Sistem Tenaga Listrik Menggunakan Perangkat Lunak Electrical Transient Analyser Program (ETAP) Versi 4.0."
- [6]. K. Rusdi, "Studi Aliran Daya Listrik Di Pt Showa Indonesia Manufacturing," 2016.
- [7]. R. W. Novialifiah, A. Soeprijanto, and R. S. Wibowo, "Algoritma Aliran Daya untuk Sistem Distribusi Radial dengan Beban Sensitif Tegangan," *J. Tek. ITS*, vol. 3, no. 1, pp. B7-B11, 2014.
- [8]. Winardi, A. Warsito, and M. R. Kartika, "Analisa Perbaikan Susut Teknis dan Susut Tegangan Pada Penyulang KLS 06 di GI Kalisari dengan menggunakan Software Etap 7.5. 0," *Transmisi*, vol. 17, no. 3, pp. 135–140, 2015.
- [9]. O. Candra, "PENERAPAN METODA DECOUPLED BERBASIS ALIRAN DAYA OPTIMAL PADA SISTEM TENAGA."