DISAIN ALAT MONITORING REAL-TIME DARI KUALITAS AIR TAMBAK UDANG BERBASIS INTERNET OF THINGS

Faisal Irsan Pasaribu, Elvy Sahnur Nasution, Lita Nasution, Muhammad Rasidy

Abstract


Tambak merupakan salah satu jenis habitat yang digunakan untuk pertanian air pesisir, di mana pertanian berkelanjutan dapat menyebabkan degradasi lingkungan, yang ditandai dengan penurunan kualitas air. Salah satu masalah utama dengan sumur semangka adalah kualitas air, yang harus sesuai dengan kebutuhan hidup semangka. Proses memantau kualitas air pada sumur semak biasanya dilakukan secara manual dengan pengambilan sampel air yang kemudian dibawa ke laboratorium untuk analisis. Tujuan penelitian ini untuk menciptakan alat dan sistem pemantauan kualitas air yang didasarkan pada Internet of Things (IoT) yang dapat memfasilitasi monitoring kualitas air. Metode penelitian dilakukan dengan menggunakan metode desain perangkat yang menggunakan sensor suhu (DS18B20), kit prob pH untuk menentukan nilai pH, sensor kekerasan df-robot, dan sensor TDS. Perangkat ini menggunakan esp8266 Arduino dan adaptor 5V sebagai sumber tegangan. Hasil pengujian dan pengukuran yang dilakukan selama lima hari menunjukkan bahwa kualitas air sangat dipengaruhi oleh sinar matahari dan mikroorganisme di dalamnya. Dari pengujian, perangkat bekerja dan berhasil disimpan di firebase, yang kemudian dapat ditampilkan secara real-time di aplikasi Android.

Keywords


IoT (Internet of Things),Firebase , sensor suhu (DS18B20

Full Text:

PDF

References


M. Bourgin et al., “Evaluation of a full-scale wastewater treatment plant upgraded with ozonation and biological post-treatments: Abatement of micropollutants, formation of transformation products and oxidation by-products,” Water Res., vol. 129, pp. 486–498, 2018, doi: 10.1016/j.watres.2017.10.036.

J. J. Wu, K. Segerson, and C. Wang, “Is environmental regulation the answer to pollution problems in urbanizing economies?,” J. Environ. Econ. Manage., vol. 117, no. October 2022, p. 102754, 2023, doi: 10.1016/j.jeem.2022.102754.

F. I. Pasaribu, A. K. Hasibuan, N. Evalina, and E. S. Nasution, “Analisa Penggunaan Surya Panel Phollycristal 240 WP Sebagai Kinerja Destilator Air Laut,” RELE (Rekayasa Elektr. dan Energi) J. Tek. Elektro, vol. 4, no. 2, pp. 90–99, 2022, doi: 10.30596/rele.v4i2.9530.

L. Nasution and D. Bakti, “Identification of fungi originated from soil polluted by Dichloro Diphenyl Trichloroethane (DDT),” IOP Conf. Ser. Earth Environ. Sci., vol. 205, no. 1, 2018, doi: 10.1088/1755-1315/205/1/012021.

A. Septian Pratama, A. Heri Efendi, D. Burhanudin, M. Rofiq, and S. Asia Malang, “SIMKARTU (SISTEM MONITORING KUALITAS AIR TAMBAK UDANG) BERBASIS ARDUINO DAN SMS GATEWAY Penulis Korespondensi,” pp. 3–8, 2019, [Online]. Available: http://www.jurnal.umk.ac.id/sitech.

G. Saravanan, S. Chandraprabha, C. Dinesh, and A. Mohamed Ibrahim, “IoT materials enabled indoor light illumination monitoring system,” Mater. Today Proc., vol. 45, no. xxxx, pp. 6277–6281, 2020, doi: 10.1016/j.matpr.2020.10.705.

P. P. K. Foughali, K. Fathallah, and A. Frihida, “A Cloud-iot based decision support system for potato,” Procedia Comput. Sci., vol. 160, pp. 616–623, 2019, doi: 10.1016/j.procs.2019.11.038.

L. M. Silalahi, S. Budiyanto, F. A. Silaban, and A. R. Hakim, “Design a Monitoring and Control in Irrigation Systems using Arduino Wemos with the Internet of Things,” J. Integr. Adv. Eng., vol. 1, no. 1, pp. 53–64, 2021, doi: 10.51662/jiae.v1i1.13.

M. Ohyver, J. V. Moniaga, I. Sungkawa, B. E. Subagyo, and I. A. Chandra, “The comparison firebase realtime database and MySQL database performance using wilcoxon signed-rank test,” Procedia Comput. Sci., vol. 157, pp. 396–405, 2019, doi: 10.1016/j.procs.2019.08.231.

F. Desai et al., “HealthCloud: A system for monitoring health status of heart patients using machine learning and cloud computing,” Internet of Things (Netherlands), vol. 17, pp. 0–2, 2022, doi: 10.1016/j.iot.2021.100485.

J. John et al., “Smart Prediction and Monitoring of Waste Disposal System Using IoT and Cloud for IoT Based Smart Cities,” Wirel. Pers. Commun., vol. 122, no. 1, pp. 243–275, 2022, doi: 10.1007/s11277-021-08897-z.

N. Schröder, C. Fischer, M. Soldera, F. Bouchard, B. Voisiat, and A. Fabián Lasagni, “Approach for monitoring the topography of laser-induced periodic surface structures using a diffraction-based measurement method,” Mater. Lett., vol. 324, no. May, pp. 1–4, 2022, doi: 10.1016/j.matlet.2022.132794.

B. Priya Prathaban, R. Balasubramanian, and R. Kalpana, “ForeSeiz: An IoMT based headband for Real-time epileptic seizure forecasting,” Expert Syst. Appl., vol. 188, no. May 2021, p. 116083, 2022, doi: 10.1016/j.eswa.2021.116083.

M. Sangeen, N. A. Bhatti, K. Kifayat, A. A. Alsadhan, and H. Wang, “Blind-trust: Raising awareness of the dangers of using unsecured public Wi-Fi networks,” Comput. Commun., vol. 209, no. June, pp. 359–367, 2023, doi: 10.1016/j.comcom.2023.07.011.

A. Chandrasekhar, D. Saini, and R. Padhi, “An artificial pancreas system in android phones: A dual app architecture,” Pervasive Mob. Comput., vol. 91, p. 101767, 2023, doi: 10.1016/j.pmcj.2023.101767.

Z. Wu, X. Chen, and S. U. J. Lee, “A systematic literature review on Android-specific smells,” J. Syst. Softw., vol. 201, p. 111677, 2023, doi: 10.1016/j.jss.2023.111677.

N. Evalina, F. I. Pasaribu, A. A. H, and A. Sary, “Penggunaan Arduino Uno Untuk Mengatur Temperatur Pada Oven,” RELE (Rekayasa Elektr. dan Energi) J. Tek. Elektro, vol. 4, no. 2, pp. 122–128, 2022, doi: 10.30596/rele.v4i2.9559.

J. Droujko, F. Kunz, and P. Molnar, “Ötz-T: 3D-printed open-source turbidity sensor with Arduino shield for suspended sediment monitoring,” HardwareX, vol. 13, p. e00395, 2023, doi: 10.1016/j.ohx.2023.e00395.

J. Chigwada, F. Mazunga, C. Nyamhere, V. Mazheke, and N. Taruvinga, “Remote poultry management system for small to medium scale producers using IoT,” Sci. African, vol. 18, p. e01398, 2022, doi: 10.1016/j.sciaf.2022.e01398.

D. Bahmanyar, N. Razmjooy, and S. Mirjalili, “Multi-objective scheduling of IoT-enabled smart homes for energy management based on Arithmetic Optimization Algorithm: A Node-RED and NodeMCU module-based technique,” Knowledge-Based Syst., vol. 247, p. 108762, 2022, doi: 10.1016/j.knosys.2022.108762.

T. M. Murugan, R. Kiruba Shankar, P. Shivkumar, S. Raja Kumar, K. Gayathri, and A. Jeyam, “Monitoring and controlling the desalination plant using IoT,” Meas. Sensors, vol. 27, no. March, p. 100720, 2023, doi: 10.1016/j.measen.2023.100720.

F. I. Pasaribu and I. Roza, “Design of control system expand valve on water heating process air jacket,” IOP Conf. Ser. Mater. Sci. Eng., vol. 821, no. 1, 2020, doi: 10.1088/1757-899X/821/1/012050.

R. B. McCleskey et al., “Salinity and total dissolved solids measurements for natural waters: An overview and a new salinity method based on specific conductance and water type,” Appl. Geochemistry, vol. 154, no. May, p. 105684, 2023, doi: 10.1016/j.apgeochem.2023.105684.

X. Xu, Z. Du, Z. Bai, S. Wang, C. Wang, and D. Li, “Fault diagnosis method of dissolved oxygen sensor electrolyte loss based on impedance measurement,” Comput. Electron. Agric., vol. 212, no. June, p. 108123, 2023, doi: 10.1016/j.compag.2023.108123.

C. Prakash, L. P. Singh, A. Gupta, and S. K. Lohan, “Advancements in smart farming: A comprehensive review of IoT, wireless communication, sensors, and hardware for agricultural automation,” Sensors Actuators A Phys., vol. 362, p. 114605, 2023, doi: https://doi.org/10.1016/j.sna.2023.114605.

J. Trevathan, W. Read, and A. Sattar, “Implementation and Calibration of an IoT Light Attenuation Turbidity Sensor,” Internet of Things (Netherlands), vol. 19, no. June, p. 100576, 2022, doi: 10.1016/j.iot.2022.100576.

D. Sarpal, R. Sinha, M. Jha, and P. TN, “AgriWealth: IoT based farming system,” Microprocess. Microsyst., vol. 89, no. June 2021, p. 104447, 2022, doi: 10.1016/j.micpro.2022.104447.




DOI: https://doi.org/10.30596/rele.v6i1.17200

Refbacks

  • There are currently no refbacks.