Analisis Kekuatan Mekanik Komposit Polimer Diperkuat Serbuk Kulit Kerang

Achmad Jusuf Zulfikar, Din Aswan A. Ritonga, Siswo Pranoto, Fadly A. Kurniawan Nasution, Zainal Arif, Junaidi Junaidi


In recent decades, the development of composite material technology has continued to increase rapidly and has been used for various applications as an alternative material to replace metal. In line with growing environmental issues, the utilization of natural materials which are abundant in nature and easy to find is the main priority for composite building materials. In this study, shell powder was used as a reinforcing material for epoxy polymer composites. The aims of this study were to obtain the average compressive, tensile, and flexural strength of shell powder-reinforced polymer composite materials, to calculate the distribution of test results using the PDF method, and to calculate the contribution of shell powder to the mechanical properties mentioned using the ANOVA method. The tensile, compressive, and flexural test specimens follow the test specimen standards of ASTM D638, ASTM D7264, and ASTM D695 respectively. The composition of shell powder consists of 10%, 30%, and 50%. Testing of these mechanical properties using a UTM-type hydraulic test equipment model WEW-300D with a capacity of 300 kN. The test results show an increase in the mechanical properties of the material. The increase occurred in compressive and flexural strength where the composition was given up to 30% and 50%, namely between 120 – 125 MPa. However, increasing the composition of shell powder at 30% and 50% actually resulted in a decrease in tensile strength between 12 – 9 MPa. Finally, based on the results of ANOVA analysis, it was shown that the addition of shell powder as a reinforcement for polymer composites significantly improved their mechanical properties.


Mechanical Strength of Materials; Materials of Polymer Composites; Shell Powder; Analysis of ANOVA


P. S. S. Kumar. and K. V. Allamraju., “Experimental study and characterization of glass, jute & sisal fiber reinforced polymer matrix composites,” Mater. Today Proc., vol. 44, pp. 941–948, 2021, doi: 10.1016/j.matpr.2020.11.003.

D. A. Siregar and A. J. Zulfikar, “Analisis Kekuatan Tekan Selubung Komposit Laminat E-glass pada Beton Kolom Silinder dengan Metode Vacuum Bagging,” J. Rekayasa Mater. Manufaktur dan Energi, vol. 5, no. 1, pp. 20–25, 2022.

D. Alamsyah, A. J. Zulfikar, and M. Y. R. Siahaan, “Optimasi Kekuatan Tekan Beton Kolom Silinder Diperkuat Selubung Komposit Laminat Jute Dengan Metode Anova,” JCEBT (Journal Civ. Eng. Build. Transp., vol. 6, no. 1, pp. 30–36, 2022.

W. Ouarhim, H. Essabir, M. O. Bensalah, D. Rodrigue, R. Bouhfid, and A. el kacem Qaiss, “Hybrid composites and intra-ply hybrid composites based on jute and glass fibers: A comparative study on moisture absorption and mechanical properties,” Mater. Today Commun., vol. 22, no. March 2019, pp. 48–57, 2020, doi: 10.1016/j.mtcomm.2019.100861.

A. T. Muzakir, A. J. Zulfikar, and M. Y. R. Siahaan, “Analisis Kekuatan Tekan Beton Kolom Silinder Diperkuat Komposit Hibrid Laminat Jute E-Glass Epoksi,” JCEBT (Journal Civ. Eng. Build. Transp., vol. 6, no. 1, pp. 12–19, 2022.

N. Hidayat, A. J. Zulfikar, and M. Y. R. Siahaan, “Analisis Kekuatan Tekan Struktur Beton Kolom Silinder Diperkuat Komposit Laminat Hibrid Jute E-glass Epoksi Eksperimental dan ANOVA,” JCEBT (Journal Civ. Eng. Build. Transp., vol. 6, no. 1, pp. 37–44, 2022.

B. K. Sriranga, L. J. Kirthan, and G. Ananda, “The mechanical properties of hybrid laminates composites on epoxy resin with natural jute fiber and S-glass fibers,” in Materials Today: Proceedings, 2021, vol. 46, pp. 8927–8933. doi: 10.1016/j.matpr.2021.05.363.

M. Y. Yuhazri, A. J. Zulfikar, and A. Ginting, “Fiber Reinforced Polymer Composite as a Strengthening of Concrete Structures: A Review,” IOP Conf. Ser. Mater. Sci. Eng., vol. 1003, no. 1, pp. 1–12, 2020, doi: 10.1088/1757-899X/1003/1/012135.

Iswandi, A. B. Sulong, and T. Husaini, “Effects of Graphite/Polypropylene on the Electrical Conductivity of Manufactured Bipolar Plate,” Malaysian J. Anal. Sci., vol. 23, no. 2, pp. 1–7, 2019.

A. J. Zulfikar and M. Y. R. Siahaan, “Analisis Signifikansi Roda Skateboard Berbahan Komposit Serbuk Batang Pisang Terhadap Perfoma Kecepatan Dengan Metode Anova,” J. Rekayasa Mater. Manufaktur dan Energi, vol. 4, no. 2, pp. 83–90, 2021, [Online]. Available:

O. J. Kalesaran, C. Lumenta, R. Rompas, and G. Mamuaya, “Komposisi mineral cangkang kerang mutiara Pinctada margaritifera di Sulawesi Utara,” J. Budid. Perair., vol. 6, no. 1, pp. 25–30, 2018, doi: 10.35800/bdp.6.1.2018.24126.

R. C. Hibbeler, Mechanics of Materials, 8th ed. New York: Pearson Prentice Hall, 2011.

Iswandi, J. Sahari, and A. B. Sulong, “Effects of different particles sizes of graphite on the engineering properties of graphites/polypropylene composites on injection molding aplication,” Key Eng. Mater., vol. 471–472, pp. 109–114, 2011, doi: 10.4028/

Iswandi, J. Sahari, A. B. Sulong, and T. Husaini, “Critical Powder Loading and Rheological Properties of Polypropylene/Graphite Composite Feedstock for Bipolar Plate Application,” Malaysian J. Anal. Sci., vol. 20, no. 3, pp. 687–696, 2016, doi: 10.17576/mjas-2016-2003-30.

J. M. Gere, Mechanics of Materials, 6th ed. New York: Thomson Learning, Inc., 2017.

and G. R. D. Montgomery, Applied Statistics and Probability for Engineers Third Edition Yuliarman., 6th ed. New York, 2017.

H. Arsham and M. Lovric, “Bartlett’s Test,” Int. J. Stat. Syst., vol. 12, no. October, pp. 1–4, 2020.

N. A. Mohd Radzuan, A. B. Sulong, and Iswandi, “Effect of multi-sized graphite filler on the mechanical properties and electrical conductivity,” Sains Malaysiana, vol. 50, no. 7, pp. 2025–2034, 2021, doi: 10.17576/jsm-2021-5007-17.

A. Basuki, “Fungsi Kepadatan Probabilitas,” in Statistika dan Probabilitas, 2004, pp. 1–12.

W.-H. Chen, M. C. Uribe, E. E. Kwon, K.-Y. A. Lin, and Y.-K. Park, “A comprehensive review of thermoelectric generation optimization by statistical approach: Taguchi method, analysis of variance (ANOVA), and response surface methodology (RSM),” Renew. Sustain. Energy Rev., vol. 169, no. 1, pp. 112–123, 2022.

M. K. Umam, L. Noerochim, and S. T. Wicaksono, “Pengaruh Komposisi Filler Limbah Cangkang Kerang dan Fiberglass terhadap Sifat Fisis dan Mekanik Komposit untuk Aplikasi Papan Partikel Semen,” J. Tek. ITS, vol. 8, no. 2, pp. 118–123, 2019.

N. Nayiroh and Kusairi, “Studi Pengaruh Variasi Fraksi Volum Filler Terhadap Sifat Mekanik Komposit Matriks Polimer (PMC) Berpenguat Cangkang Kerang Hijau (Perna Viridis L.),” Wahana Fis., vol. 6, no. 1, pp. 48–58, 2021.

A. Nayan and T. Hafli, “ANALISA STUKTUR MIKRO MATERIAL KOMPOSIT POLIMER BERPENGUAT SERBUK CANGKANG KERANG,” Malikussaleh J. Mech. Sci. Technol., vol. 6, no. 1, pp. 15–24, 2022.

A. J. Zulfikar, M. Y. R. Siahaan, A. Irwan, F. A. K. Nasution, and D. A. A. Ritonga, “Analisis Kekuatan Mekanik Pipa Air dari Bahan Komposit Serbuk Kulit Kerang,” J. Rekayasa Mater. Manufaktur dan Energi, vol. 5, no. 2, pp. 83–93, 2022.

M. Zhou, P. Wei, and L. Deng, “Research on the factorial effect of science and technology innovation (STI) policy mix using multifactor analysis of variance (ANOVA),” J. Innov. Knowl., vol. 7, no. 4, pp. 100–114, 2022.



  • There are currently no refbacks.

Creative Commons License

This work is licensed under a Creative Commons Attribution 3.0 License

Jurnal Rekayasa Material, Manufaktur dan Energi  is abstracting & indexing in the following databases: 


Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Statcounter View My Stats RMME