Efektivitas Supernatan Isolat Bakteri RNc19 dan RNc43 sebagai Antagonis terhadap Patogen Hawar Malai Padi Burkholderia glumae in Vitro

Ellia Septiarahma Rumambi, Fadjar Rianto, Supriyanto Supriyanto

Abstract


Supernatan dari kultur cair isolat bakteri antagonis diperkirakan mengandung senyawa metabolit yang berfungsi sebagai antimikroba. Kemampuan sebagai antibakteri ditunjukkan oleh sel isolat RNc19 dan RNc43 terhadap Burkholderia glumae, patogen penyebab penyakit hawar malai bakteri pada tanaman padi. Penelitian bertujuan menguji kemampuan antibakteri dari supernatan yang dihasilkan isolat RNc19 dan RNc43 terhadap B. glumae. Isolat bakteri yang digunakan merupakan hasil isolasi rhizosfer Nepenthes clipeata dari Bukit Kelam, Sintang. Produksi supernatan kedua isolat antagonis melalui co-culture, menumbukan isolat antagonis yang ditambahkan dengan B. glumae pada hari ke 2 masa inkubasi. Pengujian sebagai antibakteri meliputi kemampuan daya hambat menggunakan metode difusi cakram agar, menentukan minimum inhibition concentration (MIC) dan minimum bactericidal concentration (MBC). Hasil pengujian menunjukkan supernatan co-culture RNc19 lebih efektif menghambat pertumbuhan bakteri B. glumae dengan daya hambat 77.46%, sedangkan supernatan co-culture RNc43 menunjukkan daya hambat sebesar 46.94%. Kedua supernatan memiliki nilai MIC sebesar 50% dan tidak punya kemampuan membunuh sel B. glumae Hasil penelitian diharapkan dapat menjadi alternatif bahan yang dapat dimanfaatkan sebagai antimikroba patogen tanaman dan pengembangan produksi metabolit sekunder antimikroba.


Keywords


Antibakteri, minimum bactericidal concentration, minimum inhibition concentration, supernatan co-culture.

Full Text:

PDF

References


Akpor, O. B., Okonkwo, M. A., Ogunnusi, T. A., dan Oluba, O. M. 2022. Production, characterization and growth inhibitory potential of metabolites produced by Pseudomonas and Bacillus species. Scientific African 15 e01085

Bancalari, E., Martelli, F. Bernini, V. Neviani, E., Gatti, M. 2020. Bacteriostatic or bactericidal? Impedometric measurements to test the antimicrobial activity of Arthtrospira platensis extract. Food Control, vol. 118. https://doi.org/10.1016/j.foodcont.2020.107380.

CLSI. (Clinical & Laboratory Standards Institute) (2012). Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically; Approved Standard - Ninth Edition. CLSI document M07-A9. Wayne, PA: Clinical and Laboratory Standards Institute.

Goers L, Freemont P, Polizzi KM. (2014). Co-culture systems and technologies: taking synthetic biology to the next level. J R Soc Interface, 11. DOI:10.1098/ rsif.2014.0065

Hamidah, M.N., Rianingsih, L. and Romadhon, R. 2019. Aktivitas antibakteri isolat bakteri asam laktat dari peda dengan jenis ikan berbeda terhadap E. coli dan S. aureus. Jurnal Ilmu dan Teknologi Perikanan, 1(2), pp.11-21.

Handiyanti, M., S. Subandiyah., dan T. Joko. 2018. Molecular Detection of Burkholderia Glumae , A Causal Agent of Bacterial Panicle Blight Disease Deteksi Molekuler Burkholderia glumae , Penyebab Penyakit Hawar Malai Padi. Jurnal Perlindungan Tanaman Indonesia, 22(1), 98–107. doi: 10.22146/jpti.30259.

Haryati, S., F. Hamzah., dan F. Restuhadi. 2015. Uji Aktivitas Antibakteri Ekstrak Cangkang Kelapa Sawit (Elaeis guineensis Jacq.,). Jom Faperta, 2(1), 1-10.

Hasibuan, M., I. Safni, Lisnawita, dan K. Lubis. 2018. Morphological Characterization of Several Strains of the Rice-Pathogenic Bacterium Burkholderia glumae in North Sumatra dalam IOP Conf. Ser.: Earth Environ. Sci 122 (hlm. 1–5). Medan. 7-8 November 2018.

Hikichi, Y., Z. Kazumi, K. Toyoda, M. Horikoshi, T. Hirooka, and T. Okuno. 1998. Successive observation of growth and movement of genetically lux-marked Pseudomonas cichorii and the response of host tissues in the same lettuce leaf. Ann. Phytopathol. Soc. Jpn, 64, 519–25.

Jacob J., Rajendran R. U., Priya S. H., Purushothaman J, Saraswathy Amma D. K. B. N. 2017 Enhanced antibacterial metabolite production through the application of statistical methodologies by a Streptomyces nogalater NIIST A30 isolated from Western Ghats forest soil. PloS ONE 12(4): e0175919. https://doi.org/10.1371/journal.pone.0175919

Kumar, D. and Kumar, S. 2016. Antimicrobial metabolites and antibiotics obtained from different environmental sources. Review article. International J. Pharmaceutical Research & Allied Sci., 5(3):85-90

Manjula K, Kishore GK, Podile AR. 2004. Whole cells of Bacillus subtilis AF 1 proved more effective than cell-free and chitinase-based formulations in biological control of citrus fruit rot and groundnut rust. Can J Microbiol. 50(9):737-44. doi: 10.1139/w04-058. PMID: 15644928.

Maturi, L. dan Peeler, J. BAM Chapter 3: Aerobic Plate Count. https://www.fda.gov/food/laboratory-methods-food/bam-chapter-3-aerobic-plate-count (diakses pada tanggal 25 Mei 2023).

Mulaw, T., Y. Wamishe., dan Y. Jia. 2018. Characterization and in plant detection of bacteria that cause bacterial panicle blight of rice. American Journal of Plant Sciences, 9, 667–84.doi: 10.4236/ajps.2018.94053.

Munfaati, P. N., E. Ratnasari, dan G. Trimulyono. 2014. Aktivitas senyawa antibakteri ekstrak herba meniran (Phyllanthus niruri) terhadap pertumbuhan bakteri Shigella dysenteriae secara in vitro. Lentera Bio.

Ngalimat, M. S., E. Mohd Hata, D. Zulperi, S. I. Ismail, M. R. Ismail, N. A. I. Mohd Zainudin, N. B. Saidi, dan M. T. Yusof. 2021. Characterization of Streptomyces Spp. from Rice Fields as A Potential Biocontrol Agent against Burkholderia glumae and Rice Plant Growth Promoter. Agronomy, 11(9).doi: 10.3390/ agronomy11091850.

Otten W, Bailey DJ, Gilligan CA. 2004. Empirical evidence of spatial thresholds to control invasion of fungal parasites and saprotrophs. New Phytol. Vol. 163(1):125-132. doi: 10.1111/j.1469-8137.2004.01086.x. PMID: 33873783.

Parlindo, F. dan Septia, E. D. 2019. Keanekaragaman dan sebaran mikroba endofit indigenous pada tanaman kedelai (Glycine max L. Merril). Agriprima 1(3), 1-14.

Pellegrini, M., G. Pagnani, M. Bernardi, Al Mattedi, D. M. Spera, dan M. D. Gallo. 2020. Cell-Free Supernatants of Plant Growth-Promoting Bacteria: A Review of Their Use as Biostimulant and Microbial Biocontrol Agents in Sustainable Agriculture. Sustainability, 12(23).doi: 10.3390/su12239917.

Podile, A.R., and Kishore, G.K. 2002. Biological control of peanut diseases. In Biological control of crop diseases. Edited by S.S. Gnanamanickam. Marcel Dekker, Inc., New York. pp. 131–160.

Poinar, G.O., Thomas, G.M. 1984. Bacteria. In: Laboratory Guide to Insect Pathogens and Parasites. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-8544-8_4

Rakhmawatie, M. D., Marfu’ati, N., Barsaliputri, B., Fikriyah, A. Z., Ethica, S. N. 2023. Antibacterial activity and GC-MS profile of secondary metabolites of Bacillus subtilis subsp. subtilis HSFI-9 associated with Holothuria scabra. Biodiversitas 24(5):2843-2849.

Saraf, M., Pandya, U., dan Thakkar, A. 2014. Role of allelochemicals in plant growth promoting rhizobacteria for biocontrol of phytopathogens. Microbiological research 169, 18-29

Soleha, T. U. 2015. Uji Kepekaan terhadap Antibiotik.Juke Unila, 5(9), 119-123.

Sutton, S. 2011. Measurement of Microbial Cells by Optical Density.Journal of Validation Technology.

Tankeshwar, A. 2022. Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC). https://microbeonline.com/minimum-inhibitory-concentration-and-minimum-bactericidal-concentration-mbc/#google_vignette. (diakses pada tanggal 20 Juli 2023).

Wakefield, J., Hasan, H. M., Jaspar, M., Ebel, R. and Rateb, M. E. 2017. Dual induction of new microbial secondary metabolites by fungal bacterial co-cultivation. Frontier vol. 8 https://doi.org/10.3389/fmicb.2017.01284

Zhou-qi, C., Z. Bo., X. Guan-lin., L. Bin., dan H. Shi-wen. 2016. Research status and prospect of Burkholderia glumae, the pathogen causing bacterial panicle blight. Rice Science, 23(3), 111–18. doi: 10.1016/j.rsci.2016.01.007.




DOI: https://doi.org/10.30596/agrium.v27i2.16651

Refbacks

  • There are currently no refbacks.


Agrium: Jurnal Ilmu Pertanian indexing: 

 

 

Flag Counter