Nave Bayes Classifier Method Expert System for Diagnosis of Attention Disorders and Hyperactivity in Children
Abstract
ADHD, also known as Attention Deficit Disorder and Hyperactivity in Indonesian, is a psychiatric condition that makes sufferers less able to focus and more prone to excessive activity or being unable to sit still than average persons. Many people are still unaware that if a youngster exhibits excessive behavior and has poor concentration, the child may have ADHD. Even if these symptoms have manifested, many parents choose to ignore them due to the high expense and distance required to see a doctor; therefore, a professional system is required to identify the sickness. The system's creation aims to make it simpler to diagnose diseases so that they can be stopped before they start and their symptoms can be treated. The technique makes use of the MySQL database, PHP programming language, and NBC (Naive Bayes Classifier). Black box testing of a system. By showing the percentage of symptoms, Nave Bayes values, and disease solutions, the results provide an expert system for diagnosing ADHD in kids using the Naive Bayes approach.
Keywords
Full Text:
PDFReferences
Abdellatif, A. A., Mohamed, A., Chiasserini, C. F., Tlili, M., & Erbad, A. (2019). Edge computing for smart health:
Context-aware approaches, opportunities, and challenges. IEEE Network, 33(3), 196-203.
Ahmad, S., Asghar, M. Z., Alotaibi, F. M., & Al-Otaibi, Y. D. (2022). A hybrid CNN+ BILSTM deep learning-based DSS
for efficient prediction of judicial case decisions. Expert Systems with Applications, 209, 118318.
Ahyaruddin, W., & Topiq, S. (2021). Sistem Pakar Diagnosa Penyakit Paru-Paru Pada Anak Dengan Metode Naive
Bayes Berbasis Web. eProsiding Teknik Informatika (PROTEKTIF), 2(1), 134-141.
Alizadeh, S. H., Hediehloo, A., & Harzevili, N. S. (2021). Multi independent latent component extension of naive bayes
classifier. Knowledge-Based Systems, 213, 106646.
Clayton, S. (2020). Climate anxiety: Psychological responses to climate change. Journal of anxiety disorders, 74,
Dobrakowski, P., & ?ebecka, G. (2020). Individualized neurofeedback training may help achieve long-term
improvement of working memory in children with ADHD. Clinical eeg and Neuroscience, 51(2), 94-101.
Handoko, M. R., & Neneng, N. (2021). Sistem Pakar Diagnosa Penyakit Selama Kehamilan Menggunakan Metode
Naive Bayes Berbasis Web. Jurnal Teknologi Dan Sistem Informasi, 2(1), 50-58.
Jaakkola, H., Henno, J., Mkel, J., & Thalheim, B. (2019, May). Artificial intelligence yesterday, today and tomorrow.
In 2019 42nd International Convention on Information and Communication Technology, Electronics and
Microelectronics (MIPRO) (pp. 860-867). IEEE.
Kirly, O., Potenza, M. N., Stein, D. J., King, D. L., Hodgins, D. C., Saunders, J. B., ... & Demetrovics, Z. (2020). Preventing
problematic internet use during the COVID-19 pandemic: Consensus guidance. Comprehensive psychiatry,
, 152180.
Kusumawati, R., Darofah, A., & Pramana, P. A. (2019, October). Comparison Performance of Naive Bayes Classifier
and Support Vector Machine Algorithm for Twitters Classification of Tokopedia Services. In Journal of
Physics: Conference Series (Vol. 1320, No. 1, p. 012016). IOP Publishing.
Maddikunta, P. K. R., Hakak, S., Alazab, M., Bhattacharya, S., Gadekallu, T. R., Khan, W. Z., & Pham, Q. V. (2021).
Unmanned aerial vehicles in smart agriculture: Applications, requirements, and challenges. IEEE Sensors
Journal, 21(16), 17608-17619.
Mesaros, A., Heittola, T., Virtanen, T., & Plumbley, M. D. (2021). Sound event detection: A tutorial. IEEE Signal
Processing Magazine, 38(5), 67-83
Mitchell, J. T., Sibley, M. H., Hinshaw, S. P., Kennedy, T. M., Chronis-Tuscano, A., Arnold, L. E., ... & Jensen, P. S. (2021).
A qualitative analysis of contextual factors relevant to suspected late-onset ADHD. Journal of Attention
Disorders, 25(5), 724-735.
Mizuno, Y., Kagitani-Shimono, K., Jung, M., Makita, K., Takiguchi, S., Fujisawa, T. X., ... & Tomoda, A. (2019). Structural
brain abnormalities in children and adolescents with comorbid autism spectrum disorder and attention-
deficit/hyperactivity disorder. Translational psychiatry, 9(1), 1-7.
Morrison-Smith, S., & Ruiz, J. (2020). Challenges and barriers in virtual teams: a literature review. SN Applied
Sciences, 2(6), 1-33.
Ohnishi, T., Kobayashi, H., Yajima, T., Koyama, T., & Noguchi, K. (2019). Psychiatric comorbidities in adult attention-
deficit/hyperactivity disorder: prevalence and patterns in the routine clinical setting. Innovations in clinical
neuroscience, 16(9-10), 11.
Puig-Domingo, M., Marazuela, M., & Giustina, A. (2020). COVID-19 and endocrine diseases. A statement from the
European Society of Endocrinology. Endocrine, 68(1), 2-5.
Salman, F. M., & Abu-Naser, S. S. (2019). Expert System for Castor Diseases and Diagnosis. International Journal of
Engineering and Information Systems (IJEAIS), 3(3), 1-10.
Setiyani, S. (2021). Penerapan Metode Naive Bayes Classifier Pada Sistem Pakar Diagnosa Penyakit Lambung.
Penerapan Metode Naive Bayes Classifier Pada Sistem Pakar Diagnosa Penyakit Lambung, 1-10.
Shneiderman, B. (2020). Human-centered artificial intelligence: Reliable, safe & trustworthy. International Journal
of HumanComputer Interaction, 36(6), 495-504.
Yazar, A., Ak?n, F., Aka, . F., Eklio?lu, B. S., Tre, E., Co?kun, F., & Atabek, M. E. (2019). The effect of attention
deficit/hyperactivity disorder and other psychiatric disorders on the treatment of pediatric diabetes mellitus.
Pediatric diabetes, 20(3), 345-352.
DOI: https://doi.org/10.30596/ijessr.v3i3.12638
Refbacks
- There are currently no refbacks.

