Performance Comparison of Boosting Algorithms in Spices Classification Using Histogram of Oriented Gradient Feature Extraction

Muhathir Muhathir, Reydo Trisno Pangestu, Ira Safira, Melisah Melisah


Spice classification is an important task in the food industry to ensure food safety and quality. This study focuses on the classification of spices using the HoG feature extraction method and boosting algorithms. The objective of this research is to compare the performance of four different models of boosting algorithms, namely Adaboost Classifier, Gradient Boosting Classifier, XGB Classifier, and Light GBM Classifier, in classifying spices. The evaluation metrics used in this research are Precision, Recall, F1-Score, F2-Score, Jaccard Score, and Accuracy. The results show that the XGB Classifier model achieved the best performance, with a precision of 0.811, recall of 0.809, and F1-score of 0.809, while the Adaboost Classifier model had the lowest performance, with a precision of 0.709, recall of 0.689, and F1-score of 0.682. Overall, the results indicate a fairly good success rate in classifying spices using the HoG feature extraction method and boosting algorithms. However, further evaluation is needed to improve the accuracy of the classification results, such as increasing the number of training data or considering the use of other feature extraction methods


Spices, HoG, Boosting Algoritmh

Full Text:



Achyunda Putra, F. A. I., Utaminingrum, F., & Mahmudy, W. F. (2020a). HOG Feature Extraction and KNN Classification for Detecting Vehicle in The Highway. IJCCS (Indonesian Journal of Computing and Cybernetics Systems), 14(3), 231.

Ali, A., Wu, H., Ponnampalam, E. N., Cottrell, J. J., Dunshea, F. R., & Suleria, H. A. R. (2021). Comprehensive profiling of most widely used spices for their phenolic compounds through lc-esi-qtof-ms2 and their antioxidant potential. Antioxidants, 10(5).

Anggrasari, H., & Mulyo, J. H. (2019). The Trade Of Indonesian Spice Comodities In International Market. Agro Ekonomi, 30(1).

Embuscado, M. E. (2015). Spices and herbs: Natural sources of antioxidants - A mini review. Journal of Functional Foods, 18, 811–819.

Bakheet, S., & Al-Hamadi, A. (2021). A framework for instantaneous driver drowsiness detection based on improved HOG features and naïve bayesian classification. Brain Sciences, 11(2), 1–15.

Basha, S. M., Rajput, D. S., & Vandhan, V. (2018). Impact of gradient ascent and boosting algorithm in classification. International Journal of Intelligent Engineering and Systems (IJIES), 11(1), 41-49.

Biology, M. L.-A. of the R. S. for C., & 2021, undefined. (2021). Role of Spices in Food for Immune Boosting. Annalsofrscb.Ro, 25(3), 5841–5853

Bao, T. Q., Kiet, N. T. T., Dinh, T. Q., & Hiep, H. X. (2020). Plant species identification from leaf patterns using histogram of oriented gradients feature space and convolution neural networks. Journal of Information and Telecommunication, 4(2), 140–150.

Dorogush, A. V., Ershov, V., & Gulin, A. (2018). CatBoost: gradient boosting with categorical features support. arXiv preprint arXiv:1810.11363.

Ghaffari, S., Soleimani, P., Li, K. F., & Capson, D. W. (2020). Analysis and Comparison of FPGA-Based Histogram of Oriented Gradients Implementations. IEEE Access, 8, 79920–79934.

Girsang, N. D. (2021, February). Classification Of Batik Images Using Multilayer Perceptron With Histogram Of Oriented Gradient Feature Extraction. In Proceeding International Conference on Science and Engineering (Vol. 4, pp. 197-204).

Helmalia, A. W., Putrid, P., & Dirpan, A. (2019). Potensi Rempah-Rempah Tradisional Sebagai Sumber Antioksidan Alami Untuk Bahan Baku Pangan Fungsional). Canrea Journal: Food Technology, Nutritions, and Culinary Journal, 2(1), 26–31.

Jiang, Y., Tong, G., Yin, H., & Xiong, N. (2019). A pedestrian detection method based on genetic algorithm for optimize XGBoost training parameters. IEEE Access, 7, 118310-118321.

Khairina, N., Sibarani, T. T. S., Muliono, R., Sembiring, Z., & Muhathir, M. (2022). Identification of Pneumonia using The K-Nearest Neighbors Method using HOG Fitur Feature Extraction. JOURNAL OF INFORMATICS AND TELECOMMUNICATION ENGINEERING, 5(2), 562-568.

Muhathir, M., & Santoso, M. H. Muliono. R(2020a). Analysis Naïve Bayes In Classifying Fruit by Utilizing Hog Feature Extraction. Journal of Informatics and Telecommunication Engineering, 4(1), 151–160.

Muhathir, M., Sibarani, T. T. S., & Al-Khowarizmi, A. K. (2020). Analysis K-Nearest Neighbors (KNN) in Identifying Tuberculosis Disease (Tb) By Utilizing Hog Feature Extraction. Al'adzkiya International of Computer Science and Information Technology (AIoCSIT) Journal, 1(1).

Muhathir, M., Muliono, R., & Hafni, M. (2022). Image Classification of Autism Spectrum Disorder Children Using Naï ve Bayes Method With Hog Feature Extraction. JOURNAL OF INFORMATICS AND TELECOMMUNICATION ENGINEERING, 5(2), 494-501.

Mutiara, T. A., & Azizah, Q. N. (2022). Klasifikasi Tumor Otak Menggunakan Ekstraksi Fitur HOG dan Support Vector Machine. Jurnal Infortech, 4(1), 45–50.

Rizal, R. A., Sihotang, J. S., & Gultom, R. (2019, November). Comparison of SURF and HOG extraction in classifying the blood image of malaria parasites using SVM. In 2019 International Conference of Computer Science and Information Technology (ICoSNIKOM) (pp. 1-6). IEEE.

Sevinç, E. (2022). An empowered AdaBoost algorithm implementation: A COVID-19 dataset study. Computers & Industrial Engineering, 165, 107912

Shaker, B., Yu, M. S., Song, J. S., Ahn, S., Ryu, J. Y., Oh, K. S., & Na, D. (2021). LightBBB: computational prediction model of blood–brain-barrier penetration based on LightGBM. Bioinformatics, 37(8), 1135-1139

Susiarti, S., Rahayu, M., Ningsih, D. Q. W., Arifa, N., & Setiawan, M. (2021). Tanaman Rempah dan Masakan Tradisional di Kelurahan Nanggewer Mekar, Cibinong, Kabupaten Bogor. Jurnal Masyarakat Dan Budaya, 23(3), 337–353.

Tanjung, J. P., & Muhathir, M. (2020). Classification of facial expressions using SVM and HOG. Journal of Informatics and Telecommunication Engineering, 3(2), 210-215.

Yana. (2018). Study Jenis Rempah – Rempah dan Pemanfaatannya di Pasar Tradisional Angso Duo. Skripsi, 125.

Wulandari, I., Yasin, H., & Widiharih, T. (2020). Klasifikasi Citra Digital Bumbu Dan Rempah Dengan Algoritma Convolutional Neural Network (CNN). Jurnal Gaussian, 9(3), 273–282.



  • There are currently no refbacks.

Journal of Computer Science, Information Technologi and Telecommunication Engineering (JCoSITTE)

Department of Information Technology,
Faculty of Computer Science and Information Technology,
Universitas Muhammadiyah Sumatera Utara, Indonesia
Kampus Utama Jl. Kapten Muchtar Basri No.3, Medan, 20238, Indonesia.
E-mail: ||
Counter JCoSIITE Statcounter View My Stats

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.