Herbal Plant Classification Using Multi-Feature Extraction and Multilayer Perceptron
Abstract
Herbal plants used for medicine have prompted many researchers in the field of computer science to develop an efficient way to identify these plants through their leaves. This study will propose artificial neural networks, such as Multilayer Perceptron (MLP), to classify herbal plants. This method is used with feature extraction methods like the Gray Level Co-occurrence Matrix (GLCM), Hue Saturation Value (HSV), and Histogram of Oriented Gradients (HOG) to find out about the leaves' texture, color, and histogram. The dataset used was taken directly with a digital camera from various types of herbal plants that people usually see in everyday life. The dataset, which consisted of 450 images, was classified into nine classes. The entire dataset will be processed using a combined feature extraction method before the MLP method is used for clustering. This method is used to better understand the diversity of herbal plants and improve classification accuracy. The experimental results show that the combination of the feature extraction method and the MLP algorithm can achieve the highest accuracy of 95.56% in identifying various types of plants. This research provides significant benefits and contributes to the development of an herbal plant recognition system capable of accurate classification.
Keywords
Full Text:
PDFReferences
Al-Saif, A. M., Abdel-Sattar, M., Aboukarima, A. M., & Eshra, D. H. (2021). Application of a multilayer perceptron artificial neural network for identification of peach cultivars based on physical characteristics. PeerJ, 9, 1–22. https://doi.org/10.7717/peerj.11529
Aminul Islam, M., Billah, M., Sayeed Iftekhar Yousuf, M., & Billah, M. M. (2019). Automatic Plant Detection Using HOG and LBP Features With SVM. Article in International Journal of Computer. http://ijcjournal.org/
Anggraeny, F. T., Rahmat, B., & Pratama, S. P. (2020). Deteksi Ikan Dengan Menggunakan Algoritma Histogram of Oriented Gradients. Informatika Mulawarman : Jurnal Ilmiah Ilmu Komputer, 15(2), 114. https://doi.org/10.30872/jim.v15i2.4648
Ariansyah, M. H., Winarno, S., Nur Fitri, E., & Arga Retha, H. M. (2023). Multi-Layer Perceptron For Diagnosing Stroke With The SMOTE Method In Overcoming Data Imbalances. Innovation in Research of Informatics (INNOVATICS), 5(1), 1–8. https://doi.org/10.37058/innovatics.v5i1.6565
Azmi, F., Gibran, M. K., Ridwan, A., & Saleh, A. (2023). Enhancing Water Potability Assessment Using Hybrid Fuzzy-Naïve Bayes. Indonesian Journal of Computer Science, 12(1), 1032–1043. https://doi.org/https://doi.org/10.33022/ijcs.v12i3
Cheon, M.-K., Lee, W.-J., Hyun, C.-H., & Park, M. (2011). Rotation Invariant Histogram of Oriented Gradients. International Journal of Fuzzy Logic and Intelligent Systems, 11(4), 293–298. https://doi.org/10.5391/ijfis.2011.11.4.293
Djufri, K., Luang, L., & Araie, F. H. (2022). Identifikasi Pemanfaatan Morfologi Tumbuhan Sebagai Obat Tradisional Oleh Mahasiswa Biologi STKIP Kie Raha Ternate. Journal of Biology Education And Sciencee, 2(2), 86–94.
Hassan, S. M., Maji, A. K., Jasiński, M., Leonowicz, Z., & Jasińska, E. (2021). Identification of plant-leaf diseases using cnn and transfer-learning approach. Electronics (Switzerland), 10(12). https://doi.org/10.3390/electronics10121388
Isabona, J., Imoize, A. L., Ojo, S., Karunwi, O., Kim, Y., Lee, C. C., & Li, C. T. (2022). Development of a Multilayer Perception Neural Network for Optimal Predictive Modeling in Urban Microcellular Radio Environments. Applied Sciences (Switzerland), 12(11). https://doi.org/10.3390/app12115713
Leoni Sharmila, S., Dharuman, C., & Venkatesan, P. (2019). A Comparison of Radial Basis Function and Multilayer Perceptron Network as tool for classification of Medical Data. Journal of Physics: Conference Series, 1377(1). https://doi.org/10.1088/1742-6596/1377/1/012028
Lesiangi, F. S., Mauko, A. Y., & Djahi, B. S. (2021a). Feature extraction Hue, Saturation, Value (HSV) and Gray Level Cooccurrence Matrix (GLCM) for identification of woven fabric motifs in South Central Timor Regency. Journal of Physics: Conference Series, 2017(1). https://doi.org/10.1088/1742-6596/2017/1/012010
Lesiangi, F. S., Mauko, A. Y., & Djahi, B. S. (2021b). Feature extraction Hue, Saturation, Value (HSV) and Gray Level Cooccurrence Matrix (GLCM) for identification of woven fabric motifs in South Central Timor Regency. Journal of Physics: Conference Series, 2017(1). https://doi.org/10.1088/1742-6596/2017/1/012010
Listya, F. A., & Rokhman, N. (2019). Classification of Tangerine (Citrus Reticulata Blanco) Quality Using Combination of GLCM, HSV, and K-NN. IJCCS (Indonesian Journal of Computing and Cybernetics Systems), 13(4), 357. https://doi.org/10.22146/ijccs.47906
Naeem, S., Ali, A., Chesneau, C., Tahir, M. H., Jamal, F., Sherwani, R. A. K., & Hassan, M. U. (2021). The classification of medicinal plant leaves based on multispectral and texture feature using machine learning approach. Agronomy, 11(2). https://doi.org/10.3390/agronomy11020263
Pujiati, R., & Rochmawati, N. (2022). Identifikasi Citra Daun Tanaman Herbal Menggunakan Metode Convolutional Neural Network (CNN). Journal of Informatics and Computer Science (JINACS), 3(03), 351–357. https://doi.org/10.26740/jinacs.v3n03.p351-357
Putra, R. P. S., Aditya, C. S. K., & Wicaksono, G. W. (2024). Herbal Leaf Classification Using Deep Learning Model Efficientnetv2B0. JITK (Jurnal Ilmu Pengetahuan Dan Teknologi Komputer), 9(2), 301–307. https://doi.org/10.33480/jitk.v9i2.5119
Rabbani, F. M. R., Bima Sena Bayu Dewantara, & Endra Pitowarno. (2024). Lip Movement Recognition using Histogram of Oriented Gradient (HOG) and Support Machine Vector (SVM) for Arabic Word. Indonesian Journal of Computer Science, 12(6). https://doi.org/10.33022/ijcs.v12i6.3596
Ramli, N. E., Yahya, Z. R., & Said, N. A. (2022). Confusion Matrix as Performance Measure for Corner Detectors. Journal of Advanced Research in Applied Sciences and Engineering Technology, 29(1), 256–265. https://doi.org/10.37934/araset.29.1.256265
Rashedi, K. A., Ismail, M. T., Al Wadi, S., Serroukh, A., Alshammari, T. S., & Jaber, J. J. (2024). Multi-Layer Perceptron-Based Classification with Application to Outlier Detection in Saudi Arabia Stock Returns. Journal of Risk and Financial Management, 17(2). https://doi.org/10.3390/jrfm17020069
Sapitri, A., Asfianti, V., & Marbun, E. D. (2022). Pengelolahan Tanaman Herbal Menjadi Simplisia sebagai Obat Tradisional. Jurnal Abdimas Mutiara, 3(1), 94–102.
Tasnim, A., Saiduzzaman, Md., Rahman, M. A., Akhter, J., & Rahaman, A. S. Md. M. (2022). Performance Evaluation of Multiple Classifiers for Predicting Fake News. Journal of Computer and Communications, 10(09), 1–21. https://doi.org/10.4236/jcc.2022.109001
Yulianto, S. (2017). Penggunaan Tanaman Herbal Untuk Kesehatan. Jurnal Kebidanan Dan Kesehatan Tradisional, 2(1), 1–7. https://doi.org/10.37341/jkkt.v2i1.37
Zahirah, D., Kurniati, N., & Darwis, H. (2024). DIGITAL IMAGE CLASSIFICATION OF HERBAL LEAVES USING KNN AND CNN WITH GLCM FEATURES. Jurnal Teknik Informatika (JUTIF), 5(1), 61–67. https://doi.org/10.52436/1.jutif.2024.5.1.1162
DOI: https://doi.org/10.30596/jcositte.v5i2.20835
Refbacks
- There are currently no refbacks.