Forecasting The Number of Health Center Patient Arrivals Using Cheng’s Fuzzy Time Series Method

Aisyah Aisyah, Fibri Rakhmawati

Abstract


Forecasting is the science and art of estimating future events. Forecasting is useful in predicting events covering the short, medium and long term.  In the historical data that will be taken and project it into the future so that it involves a forecast, the forecasting involvement uses the amount of data that has been taken. The number of patient arrivals at the health center has increased and decreased every month, this increase and decrease can affect the facilities provided by the health center, so this study intends to do forecasting on the number of health center patient arrivals to meet the service facilities that must be provided. This study was carried out from January 2022 to December 2023 at the Medan Amplas Health center by utilizing Cheng's Fuzzy Times Series method, therefore the results of this calculation were 70,464 patients by getting a MAPE value of 8%.


Keywords


Cheng's Fuzzy Time Series Method; Forecasting; Number of patient

Full Text:

PDF

References


Azwar, S. 2001. Reliabilitas & Validitas. Yogyakarta: Pustaka Pelajar.

Cheng, T.L., Chen, H.J. & Teoh 2008. Fuzzy time-series based on adaptive expectation model for TAIEX forecasting. Expert Syst. Appl, 34.

Fahmi, Y.W.. & Sudarno 2015. Perbandingan metode pemulusan eksponensial tunggal dan fuzzy time series untuk memprediksi indeks harga saham gabungan. J. Gaussian, 2.

Helmi, M. & Fauzan, O.. 2023. Peramalan Waktu Pengiriman Outbound Menggunakan Random Forest Regressor. Bookpedia.

Hsb, S., Husein, I., Widyasari, R., Islam, U., Sumatera, N., Regression, S.V. & Swarm, P. 2021. Peramalan Jumlah Kasus Tuberkulosis Di Rumah Sakit Umum Haji Medan Dengan Metode Support Vector Regression- Particle Swarm. 7: 431–440.

Husein, I., Anggraini, D. & Siregar, R.M.R. 2024. Decision Support System Selecting The Best Skincare Using The Oreste Method. Mathline : Jurnal Matematika dan Pendidikan Matematika, 9(2): 575–590.

Irawan, M.. 2014. Perbandingan Metode Fuzzy Time Series Cheng dan Metode Box-Jenkins untuk Memprediksi IHSG. J. Sains dan Seni ITS, 3.

Kusumadewi, S. 2012. Aplikasi Logika Fuzzy untuk Pendukung Keputusan. Yogyakarta: Graha Ilmu.

Laily, Y.H., Rakhmawati, F. & Husein, I. 2023. Penerapan Metode Fuzzy Time Series-Markov Chain Dalam Peramalan Curah Hujan Sebagai Jadwal Tanaman Padi. Jurnal Lebesgue : Jurnal Ilmiah Pendidikan Matematika, Matematika dan Statistika, 4(1): 162–174.

Lestari, P.. n.d. Penggunaan Metode Fuzzy Time Series untuk Meramalkan Hasil Produksi Padi Kabupaten Majalengka. 2017.

Mahrus, F., Yulianto, M, T. & Faisol 2021. Perbandingan Metode Exponential Smoothing dan Moving Average Pada Peramalan Jumlah Produksi Garam di Madura. Zeta-Math J., 6(1).

Nurkhasanah, L.A., Suparti, S. & Sudarno 2015. Perbandingan Metode Runtun Waktu Fuzzy-Chen Dan Fuzzy-Markov Chain Untuk Meramalkan Data Inflasi Di Indonesia. J. Gaussian, 4(4).

Rizki, R.. 2023. Perbandingan Hasil Prediksi Harga Gas Alam Dunia Menggunakan Fuzzy Time Series Ruey Chyn Tsaur Dan Fuzzy Time Series Lee. Universitas Andalas.

Sumartini, S.. & Hayati, M.N. 2017. Peramalan Menggunakan Metode Fuzzy Time Series Cheng. J. EKSPONENSIAL, 8.

Suzuki, S. & Denny 2010. Analisis Peramalan Harga Beli Emas Dengan Kombinasi Metode Regresi Linier Sederhana Dan Single Moving Average (Studi Kasus: Pegadaian). J. Sains Teknol. Fak. Te, 12(1).

Widyasari, R., Cipta, H. & Husein, I. 2019. Integrated Ahp and Fuzzy-Promethee on Best Selection Process. ZERO: Jurnal Sains, Matematika dan Terapan, 3(1): 23–34.




DOI: https://doi.org/10.30596/jcositte.v5i2.20943

Refbacks

  • There are currently no refbacks.