Image Segmentation Using Hybrid Clustering Algorithms for Machine Learning-Based Skin Cancer Identification
Abstract
Full Text:
PDFReferences
Ahammed, M., Mamun, M. Al, & Uddin, M. S. (2022). A machine learning approach for skin disease detection and classification using image segmentation. Healthcare Analytics, 2(April), 100122. https://doi.org/10.1016/j.health.2022.100122
Anggraeny, F. T., Rahmat, B., & Pratama, S. P. (2020). Deteksi Ikan Dengan Menggunakan Algoritma Histogram of Oriented Gradients. Informatika Mulawarman : Jurnal Ilmiah Ilmu Komputer, 15(2), 114. https://doi.org/10.30872/jim.v15i2.4648
Burada, S., Manjunathswamy, B. E., & Kumar, M. S. (2024). Measurement : Sensors Early detection of melanoma skin cancer : A hybrid approach using fuzzy C-means clustering and differential evolution-based convolutional. Measurement: Sensors, 33(December 2023), 101168. https://doi.org/10.1016/j.measen.2024.101168
Carcagnì, P., Del Coco, M., Leo, M., & Distante, C. (2015). Facial expression recognition and histograms of oriented gradients: a comprehensive study. SpringerPlus, 4(1). https://doi.org/10.1186/s40064-015-1427-3
Cheon, M.-K., Lee, W.-J., Hyun, C.-H., & Park, M. (2011). Rotation Invariant Histogram of Oriented Gradients. International Journal of Fuzzy Logic and Intelligent Systems, 11(4), 293–298. https://doi.org/10.5391/ijfis.2011.11.4.293
Dhal, K. G., Das, A., Sasmal, B., Ray, S., Rai, R., & Garai, A. (2023). Fuzzy C-Means for image segmentation: challenges and solutions. Multimedia Tools and Applications, 83, 1–37. https://doi.org/10.1007/s11042-023-16569-2
Elngar, A. A., Kumar, R., Hayat, A., & Churi, P. (2021). Intelligent System for Skin Disease Prediction using Machine Learning. Journal of Physics: Conference Series, 1998(1). https://doi.org/10.1088/1742-6596/1998/1/012037
Fariza, A., Arifin, A. Z., Astuti, E. R., & Kurita, T. (2019). Segmenting tooth components in dental X-ray images using Gaussian kernel- based conditional spatial Fuzzy C-Means clustering algorithm. International Journal of Intelligent Engineering and Systems, 12(3). https://doi.org/10.22266/IJIES2019.0630.12
Goyal, M., Knackstedt, T., Yan, S., & Hassanpour, S. (2020). Artificial intelligence-based image classification methods for diagnosis of skin cancer: Challenges and opportunities. Computers in Biology and Medicine, 127(August), 104065. https://doi.org/10.1016/j.compbiomed.2020.104065
Hoshyar, A. N., Al-Jumaily, A., & Hoshyar, A. N. (2014). The beneficial techniques in preprocessing step of skin cancer detection system comparing. Procedia Computer Science, 42(C), 25–31. https://doi.org/10.1016/j.procs.2014.11.029
Islam, A. R., Alammari, A., & Buckles, B. (2024). Human skin detection: An unsupervised machine learning way. Journal of Visual Communication and Image Representation, 98(January 2022), 104046. https://doi.org/10.1016/j.jvcir.2024.104046
Islami, F. (2021). Implementation of HSV- based Thresholding Method for Iris Detection. Journal of Computer Networks, Architecture, and High-Performance Computing, 3(1), 98–104. https://doi.org/10.47709/cnahpc.v3i1.939
Kurniastuti, I., Yuliati, E. N. I., Yudianto, F., & Wulan, T. D. (2022). Determination of Hue Saturation Value (HSV) color feature in kidney histology image. Journal of Physics: Conference Series, 2157(1). https://doi.org/10.1088/1742-6596/2157/1/012020
Mamun, Md. Al, & Uddin, M. S. (2021). Hybrid Methodologies for Segmentation and Classification of Skin Diseases: A Study. Journal of Computer and Communications, 09(04), 67–84. https://doi.org/10.4236/jcc.2021.94005
Masood, A., & Al-Jumaily, A. A. (2013). Fuzzy C Mean Thresholding based Level Set for Automated Segmentation of Skin Lesions. Journal of Signal and Information Processing, 04(03), 66–71. https://doi.org/10.4236/jsip.2013.43b012
Nanni, L., Loreggia, A., Lumini, A., & Dorizza, A. (2023). A Standardized Approach for Skin Detection: Analysis of the Literature and Case Studies. Journal of Imaging, 9(2). https://doi.org/10.3390/jimaging9020035
Saber Iraji, M., & Tosinia, A. (2012). Skin Color Segmentation in YCBCR Color Space with Adaptive Fuzzy Neural Network (Anfis). International Journal of Image, Graphics and Signal Processing, 4(4), 35–41. https://doi.org/10.5815/ijigsp.2012.04.05
Sharma, S., & Chaudhary, P. (2023). Machine learning and deep learning. Quantum Computing and Artificial Intelligence: Training Machine and Deep Learning Algorithms on Quantum Computers, 71–84. https://doi.org/10.1515/9783110791402-004
Singh, S. K., Abolghasemi, V., & Anisi, M. H. (2023). Fuzzy Logic with Deep Learning for Detection of Skin Cancer. Applied Sciences, 124–134. https://doi.org/10.4324/9781315232140-14
Tahyudin, G. G., Sulistiyo, M. D., Arzaki, M., & Rachmawati, E. (2024). Classifying Gender Based on Face Images Using Vision Transformer. JOIV : International Journal on Informatics Visualization, 8(1), 18. https://doi.org/10.62527/joiv.8.1.1923
DOI: https://doi.org/10.30596/jcositte.v5i2.21016
Refbacks
- There are currently no refbacks.