Classification of Nutritional Status of Pregnant Women at Risk of Stunting in Prospective Babies Using the Support Vector Machine (SVM) Algorithm

Yesy Afrillia, Fadlisyah Fadlisyah, Nurul Annisa Asmi

Abstract


Stunting describes the existence of chronic nutritional problems, influenced by the condition of mothers/mothers-to-be, fetal period, and infants/toddlers, including diseases suffered during toddlerhood. According to a WHO report quoted from Riskesdas, in 2018 the stunting target in Indonesia was 20%, but in 2013 the stunting rate was 37.2%, but in 2018 there was a decrease to 30.8%. However, the stunting rate in Indonesia is still very high and far from what is targeted by WHO. The method with the best level of accuracy for classification in this study is SVM. This study uses the Support Vector Machine (SVM) method as criteria and attributes which take benchmarks in pregnant women with attributes as a reference including gestational age, maternal weight, blood pressure, and pregnancy problems. The reason for taking benchmarks in pregnant women is because in the first 1000 days of a baby's life determines the baby's nutrition. The first 1000 days of life or 1000 HPK is a critical period in the growth and development of children starting from the beginning of pregnancy (270 days) to 2 years old (730 days). Data was obtained from the Tanah Luas Health Center totaling 684 data on pregnant women. The process of manual calculation is data normalization, kernelization, calculating the alpha and alpha delta Ei values, calculating weights, calculating bias values, and calculating f(x) values. In this study, the dataset totaled 680 data with 544 training data and 136 test data with the criteria of gestational age, pregnant woman's weight, blood pressure, and pregnancy problems. The accuracy obtained was 38.90 %. The variables that have the most influence on this classification are 3, namely the weight of pregnant women, blood pressure, and complaints experienced in pregnant women.

Keywords


Stunting; Pregnant women; SVM

References


Ana Mariyam Puspitasari1, D. E. (2018). Klasifikasi Penyakit Gigi Dan Mulut Menggunakan Metode Support Vector Machine. 802.

Anita Ahmad Kasim, M. S. (2019). Algoritma Support Vector Machine (SVM) untuk Algoritma Support Vector Machine (SVM) untuk Pemerintah di Kecamatan Simpang Raya Sulawesi Tengah. 568.

Arif Jundi Firdausi, W. A. (2022). Perbandingan Algoritma Klasifikasi SVM dan Naive Bayes Dalam Analisis Sentimen Pembelajaran Daring di Masa Pandemi COVID-19 di Twitter. 2065.

Budianita, Elvia, and Widodo Prijodiprodjo. 2013. “Penerapan Learning Vector Quantization (LVQ) Untuk Klasifikasi Status Gizi Anak.” IJCCS (Indonesian Journal of Computing and Cybernetics Systems) 7(2):155. doi: 10.22146/ijccs.3354.

Boucot, Arthur, and George Poinar Jr. 2010. “Stunting.” Fossil Behavior Compendium 5:243–243. doi: 10.1201/9781439810590-c34.

C. Oganis 1, S. M. (2017). Klasifikasi Status Gizi Ibu Hamil Untuk Mengidetifikasi Bayi Berat Lahir Rendah (BBLR) Menggunakan Metode Support Vector Machine (SVM) (Studi Kasus Di Puskesmas Labuan). Jurnal Matematika Ilmiah dan Terapan, 144-151.

Ekayanthi, N. W., & Suryani, P. (2019). Edukasi Gizi pada Ibu Hamil Mencegah Stunting pada Kelas Ibu Hamil. Jurnal Kesehatan, 10(3), 312-319.

Eva Darnila, M. A. (2022). Implementasi Sistem Pakar Balita Malnutrisi bagi Petugas Kesehatan Muara Dua di Gampong Meunasah Mesjid Lhokseumawe. 55.

Fadlisyah, F., and S. Safwandi. 2021. “Sistem Pendeteksi Pola Fiil Mudharik Pada Kitab Matan Taqrib Menggunakan Metode Cosine.” Jurnal Teknologi Terapan and Sains 4.0.

Fauzan, Muhamad Ariq, Yesi Nurmalasari, and Anggunan Anggunan. 2021. “Hubungan Status Gizi Dengan Prestasi Belajar.” Jurnal Ilmiah Kesehatan Sandi Husada 10(1). doi: 10.35816/jiskh.v10i1.517.

Fhonna, R. P., Afrillia, Y., Zulfan, Aqmal, J., & Abadi, S. (2023). Klasifikasi Penentuan Jenis Tanah yang Sesuai Terhadap Tanaman Pangan Sebagai Solusi Ketahanan Pangan di Kabupaten Pidie Jaya MenggunakanMetode Random Forest. Jurnal Informasi dan Teknologi, 5(4), 12-18. doi:https://doi.org/10.60083/jidt.v5i4.402

firdausi, A. J., Astuti, W., & Adiwijaya. (2022). Perbandingan Algoritma Klasifikasi SVM dan Naive Bayes Dalam Analisis Sentimen Pembelajaran Daring di Masa Pandemi COVID-19 di Twitter. eProceedings of Engineering, 9(3), 2065-2083.

Kemenkes. (2018, januari 26). Artikel : Pomkes Kemkes. Diambil kembali dari Promkes Kemkes: https://promkes.kemkes.go.id/?p=8486

Mandriwati. 2018. “Asuhan Kebidanan Kehamilan Berbasis Kompetensi.” Buku Kedokteran EGC 53(9):1689–99.

Najib, A. C., Irsyad, A., Qandi, G. A., & Rakhmawati, N. A. (2019). Perbandingan Metode Lexicon-based dan SVM untuk Analisis Sentimen Berbasis Ontologi pada Kampanye Pilpres Indonesia Tahun 2019 di Twitter. Fountain of Informatics Journal, 4(2), 41. https://doi.org/10.21111/fij.v4i2.3573

Nikmatun, Inna Alvi, and Indra Waspada. 2019. “Implementasi Data Mining Untuk Klasifikasi Masa Studi Mahasiswa Menggunakan Algoritma K-Nearest N𝐸𝑖ghbor.” Jurnal SIMETRIS 10(2):421–32.

Neneng, K. A. (2016). Support Vector Machine Untuk Klasifikasi Citra Jenis Daging Berdasarkan Tekstur Menggunakan Ekstraksi Ciri Gray Level Co-Occurrence Matrices (GLCM). 1.

Pratiwi, Intan Gumilang, and Yuni Fitri Hamidiyanti. 2020. “Gizi Dalam Kehamilan : Studi Literatur.” Jurnal Gizi Prima (Prime Nutrition Journal) 5(1):20. doi: 10.32807/jgp.v5i1.171.

Puspitasari, A. M., Ratnawati, D. E., & Widodo, A. W. (2018). Klasifikasi Penyakit Gigi Dan Mulut Menggunakan Metode Support Vector Machine. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 2(2), 802–810. http://j-ptiik.ub.ac.id

Sanah, N. (2017). (Sanah, Pelaksanaan Fungsi Puskesmas (Pusat Kesehatan Masyarakat) Dalam Meningkatkan Kualitas Pelayanan Kesehatan Di Kecamatan Long Kali Kabupaten Paser. 307.

Saputra, D., & Ary, M. (2020). Prediksi Minat Klien pada Produk Deposito Menggunakan Algoritma SVM Parameter Kernel Polynomial. EProsiding Sistem Informasi (POTENSI), 1(1), 162–171.

Saputra, Erik Hadi, and Burhan Alfironi Muktamar. 2014. “Implementasi Data Mining Dengan Naive Bayes Classifier Untuk Mendukung StategiI Pemasaran Di Bagian Humas STMIK AMIKOM Yogyakarta.” SEMNASTEKNOMEDIA ONLINE 2(1).

Sumathi, S., and S. N. Sivanandam. 2006. Introduction to Data Mining and Its Applications. Vol. 29.

Titim𝐸𝑖dara, M. Y., & Hadikurniawati, W. (2021). Implementasi Metode Naive Bayes ClassifierUntuk Klasifikasi Status Gizi Stunting Pada Balita. Jurnal Ilmiah Informatika, 09 (01), 54-59. doi:https://doi.org/10.33884/jif.v9i01.3741

Wahyudin, W. C. (2020). Klasifikasi Stunting Balita Menggunakan Naive Bayes Dengan Seleksi Fitur Forward Selection. Jurnal Bisnis Digitasl dan Sistem Informasi, 1(1), 71-74.




DOI: https://doi.org/10.30596/jcositte.v6i1.22393

Refbacks

  • There are currently no refbacks.