Anomaly Detection on CBTC Wayside Units with the Random Forest Algorithm for Condition-Based Maintenance
Abstract
Keywords
Full Text:
PDFReferences
Agbolade, O. A., & Sunmola, F. (2021). Cellular Internet of Things Based Power Monitoring System for Networking Devices. https://api.semanticscholar.org/CorpusID:233271925
Allah Bukhsh, Z., Saeed, A., Stipanovic, I., & Doree, A. G. (2019). Predictive maintenance using tree-based classification techniques: A case of railway switches. Transportation Research Part C: Emerging Technologies, 101, 35–54. https://doi.org/https://doi.org/10.1016/j.trc.2019.02.001
Alvan Prastoyo Utomo, M., Aziz, A., Winarno, & Harjito, B. (2019). Server Room Temperature & Humidity Monitoring Based on Internet of Thing (IoT). Journal of Physics: Conference Series, 1306(1), 012030. https://doi.org/10.1088/1742-6596/1306/1/012030
Anders, E., Arndt, J., Berndt, T., & Braband, J. (2020). Railway Signalling & Interlocking International Compendium (G. Theeg & S. Vlasenko, Eds.; 3rd ed.). PMC Media House GmbH.
Berghout, T., Benbouzid, M., Ma, X., Djurović, S., & Mouss, L.-H. (2021). Machine Learning for Photovoltaic Systems Condition Monitoring: A Review. IECON 2021 – 47th Annual Conference of the IEEE Industrial Electronics Society, 1–5. https://doi.org/10.1109/IECON48115.2021.9589423
BPS DKI Jakarta. (2024). Statistik Transportasi Provinsi DKI Jakarta Tahun 2023.
Coraddu, A., Oneto, L., Ghio, A., Savio, S., Anguita, D., & Figari, M. (2014). Machine learning approaches for improving condition-based maintenance of naval propulsion plants. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 230(1), 136–153. https://doi.org/10.1177/1475090214540874
Dinova, D. B., & Prasetiyo, B. (n.d.). Implementasi Random Forest dalam Klasifikasi Kanker Paru-Paru. JOINTER-JOURNAL OF INFORMATICS ENGINEERING, 05(01).
Fakhereldine, A., Zulkernine, M., & Murdock, D. (2023). CBTCset: A Reference Dataset for Detecting Misbehavior Attacks in CBTC Networks. 2023 IEEE 34th International Symposium on Software Reliability Engineering Workshops (ISSREW), 57–62. https://doi.org/10.1109/ISSREW60843.2023.00047
Gao, B., Bu, B., Zhang, W., & Li, X. (2022). An Intrusion Detection Method Based on Machine Learning and State Observer for Train-Ground Communication Systems. IEEE Transactions on Intelligent Transportation Systems, 23(7), 6608–6620. https://doi.org/10.1109/TITS.2021.3058553
Gupta, S. N. (2022). Digital Transformation of Railway Signalling through Emerging Communication Technologies. 1–5.
Guzman, D. N., Hadzic, E., Baasch, B., Heusel, J., Neumann, T., Schrijver, G., Buursma, D., & Groos, J. C. (2020). Anomaly Detection and Forecasting Methods Applied to Point Machine Monitoring Data for Prevention of Railway Switch Failures. In A. Ball, L. Gelman, & B. K. N. Rao (Eds.), Advances in Asset Management and Condition Monitoring (pp. 307–318). Springer International Publishing.
Harto, M. K., & Basuki, A. (2021). Deteksi Serangan DDoS pada Jaringan Berbasis SDN dengan Klasifikasi Random Forest. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 5(4), 1329–1333. https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/8795
Hasma, Y., & Silfianti, W. (2018). IMPLEMENTASI DEEP LEARNING MENGGUNAKAN FRAMEWORK TENSORFLOW DENGAN METODE FASTER REGIONAL CONVOLUTIONAL NEURAL NETWORK UNTUK PENDETEKSIAN JERAWAT. Jurnal Ilmiah Teknologi Dan Rekayasa, 23, 89–102. https://doi.org/10.35760/tr.2018.v23i2.2459
IEEE. (2004). IEEE Standard for Communications-Based Train Control (CBTC) Performance and Functional Requirements. IEEE Std 1474.1-2004 (Revision of IEEE Std 1474.1-1999), 0_1-45. https://doi.org/10.1109/IEEESTD.2004.95746
Jonge, B., & Scarf, P. (2019). A review on maintenance optimization. European Journal of Operational Research, 285. https://doi.org/10.1016/j.ejor.2019.09.047
Karlsson, H., Qazizadeh, A., Stichel, S., & Berg, M. (2020). Condition Monitoring of Rail Vehicle Suspension Elements: A Machine Learning Approach. In M. Klomp, F. Bruzelius, J. Nielsen, & A. Hillemyr (Eds.), Advances in Dynamics of Vehicles on Roads and Tracks (pp. 119–127). Springer International Publishing.
Kementerian Perhubungan Republik Indonesia. (2017a). Peraturan Menteri Perhubungan Republik Indonesia Nomor 9 Tahun 2017 Tentang Sertifikasi Tenaga Pemeriksa Prasarana Perkeretaapian.
Kementerian Perhubungan Republik Indonesia. (2017b). Peraturan Menteri Perhubungan Republik Indonesia Nomor 17 Tahun 2017 Tentang Sertifikasi Tenaga Perawat Prasarana Perkeretaapian.
Kementerian Perhubungan Republik Indonesia. (2017c). Peraturan Menteri Perhubungan Republik Indonesia Nomor 121 Tahun 2017 tentang Lalu Lintas Kereta Api.
Kementerian Perhubungan Republik Indonesia. (2018). Peraturan Menteri Perhubungan Republik Indonesia Nomor 44 Tahun 2018 tentang Persyaratan Teknis Peralatan Persinyalan Perkeretaapian.
Koons-Stapf, A. (2015). Condition Based Maintenance: Theory, Methodology, & Application.
Li, Y., Peng, S., Li, Y., & Jiang, W. (2020). A review of condition-based maintenance: Its prognostic and operational aspects. Frontiers of Engineering Management, 7(3), 323–334. https://doi.org/10.1007/s42524-020-0121-5
Medina-Santiago, A., Azucena, A. D. P., Gómez-Zea, J. M., Jesús-Magaña, J. A., de la Luz Valdez-Ramos, M., Sosa-Silva, E., & Falcón-Pérez, F. (2020). Adaptive Model IoT for Monitoring in Data Centers. IEEE Access, 8, 5622–5634. https://api.semanticscholar.org/CorpusID:210696969
Nazaruddin, Y. Y., Faruqi, I., Waluya, M. B., Tamba, T. A., & Widyotriatmo, A. (2019). Perancangan Sistem Communication-Based Train Control (CBTC) Berbasis Sensor Fusion. Jurnal Otomasi Kontrol Dan Instrumentasi, 10(2), 111. https://doi.org/10.5614/joki.2018.10.2.4
Olde Keizer, M. C. A., Teunter, R. H., Veldman, J., & Babai, M. Z. (2018). Condition-based maintenance for systems with economic dependence and load sharing. International Journal of Production Economics, 195, 319–327. https://doi.org/https://doi.org/10.1016/j.ijpe.2017.10.030
Paolanti, M., Romeo, L., Felicetti, A., Mancini, A., Frontoni, E., & Loncarski, J. (2018). Machine Learning approach for Predictive Maintenance in Industry 4.0. 2018 14th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications (MESA), 1–6. https://doi.org/10.1109/MESA.2018.8449150
Peraturan Menteri Perhubungan Republik Indonesia Nomor 22 Tahun 2021 Perizinan Penyelenggaraan Prasarana Perkeretaapian Umum (2021).
Prabhakar P, D., & v. P., J. R. (2019). CBM, TPM, RCM and A-RCM - A Qualitative Comparison of Maintenance Management Strategies.
Qi, Z., Qi, Y., & Hu, G. (2020). Research on Fault Prediction for Marine Diesel Engines. Journal of Computer and Communications, 08(08), 36–44. https://doi.org/10.4236/jcc.2020.88004
Song, Y., Bu, B., & Zhu, L. (2020). A Novel Intrusion Detection Model Using a Fusion of Network and Device States for Communication-Based Train Control Systems. Electronics, 9(1). https://doi.org/10.3390/electronics9010181
Sousa Tomé, E., Ribeiro, R. P., Veloso, B., & Gama, J. (2023). An Online Data-Driven Predictive Maintenance Approach for Railway Switches. In I. Koprinska, P. Mignone, R. Guidotti, S. Jaroszewicz, H. Fröning, F. Gullo, P. M. Ferreira, D. Roqueiro, G. Ceddia, S. Nowaczyk, J. Gama, R. Ribeiro, R. Gavaldà, E. Masciari, Z. Ras, E. Ritacco, F. Naretto, A. Theissler, P. Biecek, … S. Pashami (Eds.), Machine Learning and Principles and Practice of Knowledge Discovery in Databases (pp. 410–422). Springer Nature Switzerland.
Teixeira, H. N., Lopes, I., & Braga, A. C. (2020). Condition-based maintenance implementation: a literature review. Procedia Manufacturing, 51, 228–235. https://doi.org/https://doi.org/10.1016/j.promfg.2020.10.033
Wiboonrat, M. (2019). Condition Based Maintenance for Data Center Operations Management. 2019 16th International Joint Conference on Computer Science and Software Engineering (JCSSE), 73–78. https://doi.org/10.1109/JCSSE.2019.8864169
YOKOUCHI, T., TAKASHIGE, T., & Kondo, M. (2022). Anomaly Detection for Railway Vehicle Equipment Using Condition Monitoring Data. Quarterly Report of RTRI, 63, 238–243. https://doi.org/10.2219/rtriqr.63.4_238
Zuo, Y., Chandran, P., Odelius, J., & Rantatalo, M. (2023). Wayside Railway Switch and Crossing Monitoring Using Isolation Forest Anomaly Scores. Sustainability, 15(20). https://doi.org/10.3390/su152014836
DOI: https://doi.org/10.30596/jcositte.v6i2.25625
Refbacks
- There are currently no refbacks.




.png)

