Anomaly Detection on CBTC Wayside Units with the Random Forest Algorithm for Condition-Based Maintenance

Rully Burhan Amali, Ahmad Tossin Alamsyah, Sutiyo Sutiyo

Abstract


This study proposed an anomaly detection model for wayside units in Communication-Based Train Control (CBTC) systems using the Random Forest algorithm. The primary goal was to identify deviations in technical parameters such as voltage, temperature, humidity, and signal strength (RSL) that may indicate potential failures in the system. Data were collected from IoT-based sensors deployed on MRT Jakarta’s CBTC wayside units and transmitted via HTTP to a cloud database for further processing. The Random Forest model was trained using labeled data and evaluated using unseen test data. The evaluation metrics, accuracy, precision, recall, and F1-score, reached 100%, indicating that the model correctly identified both normal and anomalous conditions without misclassification. Further analysis showed that high humidity, excessive panel temperature, and low RSL values were the most frequent anomaly indicators. Based on this, the system also generated maintenance recommendations, making it not only reactive but also proactive in supporting condition-based maintenance (CBM). The results demonstrated that the Random Forest-based anomaly detection system is highly effective, scalable, and reliable for real-time monitoring of railway infrastructures. This approach can serve as a foundation for future development of smart maintenance systems in other safety-critical domains.

Keywords


Anomaly Detection; Random Forest; Condition-Based Maintenance; CBTC; IoT Monitoring

Full Text:

PDF

References


Agbolade, O. A., & Sunmola, F. (2021). Cellular Internet of Things Based Power Monitoring System for Networking Devices. https://api.semanticscholar.org/CorpusID:233271925

Allah Bukhsh, Z., Saeed, A., Stipanovic, I., & Doree, A. G. (2019). Predictive maintenance using tree-based classification techniques: A case of railway switches. Transportation Research Part C: Emerging Technologies, 101, 35–54. https://doi.org/https://doi.org/10.1016/j.trc.2019.02.001

Alvan Prastoyo Utomo, M., Aziz, A., Winarno, & Harjito, B. (2019). Server Room Temperature & Humidity Monitoring Based on Internet of Thing (IoT). Journal of Physics: Conference Series, 1306(1), 012030. https://doi.org/10.1088/1742-6596/1306/1/012030

Anders, E., Arndt, J., Berndt, T., & Braband, J. (2020). Railway Signalling & Interlocking International Compendium (G. Theeg & S. Vlasenko, Eds.; 3rd ed.). PMC Media House GmbH.

Berghout, T., Benbouzid, M., Ma, X., Djurović, S., & Mouss, L.-H. (2021). Machine Learning for Photovoltaic Systems Condition Monitoring: A Review. IECON 2021 – 47th Annual Conference of the IEEE Industrial Electronics Society, 1–5. https://doi.org/10.1109/IECON48115.2021.9589423

BPS DKI Jakarta. (2024). Statistik Transportasi Provinsi DKI Jakarta Tahun 2023.

Coraddu, A., Oneto, L., Ghio, A., Savio, S., Anguita, D., & Figari, M. (2014). Machine learning approaches for improving condition-based maintenance of naval propulsion plants. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 230(1), 136–153. https://doi.org/10.1177/1475090214540874

Dinova, D. B., & Prasetiyo, B. (n.d.). Implementasi Random Forest dalam Klasifikasi Kanker Paru-Paru. JOINTER-JOURNAL OF INFORMATICS ENGINEERING, 05(01).

Fakhereldine, A., Zulkernine, M., & Murdock, D. (2023). CBTCset: A Reference Dataset for Detecting Misbehavior Attacks in CBTC Networks. 2023 IEEE 34th International Symposium on Software Reliability Engineering Workshops (ISSREW), 57–62. https://doi.org/10.1109/ISSREW60843.2023.00047

Gao, B., Bu, B., Zhang, W., & Li, X. (2022). An Intrusion Detection Method Based on Machine Learning and State Observer for Train-Ground Communication Systems. IEEE Transactions on Intelligent Transportation Systems, 23(7), 6608–6620. https://doi.org/10.1109/TITS.2021.3058553

Gupta, S. N. (2022). Digital Transformation of Railway Signalling through Emerging Communication Technologies. 1–5.

Guzman, D. N., Hadzic, E., Baasch, B., Heusel, J., Neumann, T., Schrijver, G., Buursma, D., & Groos, J. C. (2020). Anomaly Detection and Forecasting Methods Applied to Point Machine Monitoring Data for Prevention of Railway Switch Failures. In A. Ball, L. Gelman, & B. K. N. Rao (Eds.), Advances in Asset Management and Condition Monitoring (pp. 307–318). Springer International Publishing.

Harto, M. K., & Basuki, A. (2021). Deteksi Serangan DDoS pada Jaringan Berbasis SDN dengan Klasifikasi Random Forest. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 5(4), 1329–1333. https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/8795

Hasma, Y., & Silfianti, W. (2018). IMPLEMENTASI DEEP LEARNING MENGGUNAKAN FRAMEWORK TENSORFLOW DENGAN METODE FASTER REGIONAL CONVOLUTIONAL NEURAL NETWORK UNTUK PENDETEKSIAN JERAWAT. Jurnal Ilmiah Teknologi Dan Rekayasa, 23, 89–102. https://doi.org/10.35760/tr.2018.v23i2.2459

IEEE. (2004). IEEE Standard for Communications-Based Train Control (CBTC) Performance and Functional Requirements. IEEE Std 1474.1-2004 (Revision of IEEE Std 1474.1-1999), 0_1-45. https://doi.org/10.1109/IEEESTD.2004.95746

Jonge, B., & Scarf, P. (2019). A review on maintenance optimization. European Journal of Operational Research, 285. https://doi.org/10.1016/j.ejor.2019.09.047

Karlsson, H., Qazizadeh, A., Stichel, S., & Berg, M. (2020). Condition Monitoring of Rail Vehicle Suspension Elements: A Machine Learning Approach. In M. Klomp, F. Bruzelius, J. Nielsen, & A. Hillemyr (Eds.), Advances in Dynamics of Vehicles on Roads and Tracks (pp. 119–127). Springer International Publishing.

Kementerian Perhubungan Republik Indonesia. (2017a). Peraturan Menteri Perhubungan Republik Indonesia Nomor 9 Tahun 2017 Tentang Sertifikasi Tenaga Pemeriksa Prasarana Perkeretaapian.

Kementerian Perhubungan Republik Indonesia. (2017b). Peraturan Menteri Perhubungan Republik Indonesia Nomor 17 Tahun 2017 Tentang Sertifikasi Tenaga Perawat Prasarana Perkeretaapian.

Kementerian Perhubungan Republik Indonesia. (2017c). Peraturan Menteri Perhubungan Republik Indonesia Nomor 121 Tahun 2017 tentang Lalu Lintas Kereta Api.

Kementerian Perhubungan Republik Indonesia. (2018). Peraturan Menteri Perhubungan Republik Indonesia Nomor 44 Tahun 2018 tentang Persyaratan Teknis Peralatan Persinyalan Perkeretaapian.

Koons-Stapf, A. (2015). Condition Based Maintenance: Theory, Methodology, & Application.

Li, Y., Peng, S., Li, Y., & Jiang, W. (2020). A review of condition-based maintenance: Its prognostic and operational aspects. Frontiers of Engineering Management, 7(3), 323–334. https://doi.org/10.1007/s42524-020-0121-5

Medina-Santiago, A., Azucena, A. D. P., Gómez-Zea, J. M., Jesús-Magaña, J. A., de la Luz Valdez-Ramos, M., Sosa-Silva, E., & Falcón-Pérez, F. (2020). Adaptive Model IoT for Monitoring in Data Centers. IEEE Access, 8, 5622–5634. https://api.semanticscholar.org/CorpusID:210696969

Nazaruddin, Y. Y., Faruqi, I., Waluya, M. B., Tamba, T. A., & Widyotriatmo, A. (2019). Perancangan Sistem Communication-Based Train Control (CBTC) Berbasis Sensor Fusion. Jurnal Otomasi Kontrol Dan Instrumentasi, 10(2), 111. https://doi.org/10.5614/joki.2018.10.2.4

Olde Keizer, M. C. A., Teunter, R. H., Veldman, J., & Babai, M. Z. (2018). Condition-based maintenance for systems with economic dependence and load sharing. International Journal of Production Economics, 195, 319–327. https://doi.org/https://doi.org/10.1016/j.ijpe.2017.10.030

Paolanti, M., Romeo, L., Felicetti, A., Mancini, A., Frontoni, E., & Loncarski, J. (2018). Machine Learning approach for Predictive Maintenance in Industry 4.0. 2018 14th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications (MESA), 1–6. https://doi.org/10.1109/MESA.2018.8449150

Peraturan Menteri Perhubungan Republik Indonesia Nomor 22 Tahun 2021 Perizinan Penyelenggaraan Prasarana Perkeretaapian Umum (2021).

Prabhakar P, D., & v. P., J. R. (2019). CBM, TPM, RCM and A-RCM - A Qualitative Comparison of Maintenance Management Strategies.

Qi, Z., Qi, Y., & Hu, G. (2020). Research on Fault Prediction for Marine Diesel Engines. Journal of Computer and Communications, 08(08), 36–44. https://doi.org/10.4236/jcc.2020.88004

Song, Y., Bu, B., & Zhu, L. (2020). A Novel Intrusion Detection Model Using a Fusion of Network and Device States for Communication-Based Train Control Systems. Electronics, 9(1). https://doi.org/10.3390/electronics9010181

Sousa Tomé, E., Ribeiro, R. P., Veloso, B., & Gama, J. (2023). An Online Data-Driven Predictive Maintenance Approach for Railway Switches. In I. Koprinska, P. Mignone, R. Guidotti, S. Jaroszewicz, H. Fröning, F. Gullo, P. M. Ferreira, D. Roqueiro, G. Ceddia, S. Nowaczyk, J. Gama, R. Ribeiro, R. Gavaldà, E. Masciari, Z. Ras, E. Ritacco, F. Naretto, A. Theissler, P. Biecek, … S. Pashami (Eds.), Machine Learning and Principles and Practice of Knowledge Discovery in Databases (pp. 410–422). Springer Nature Switzerland.

Teixeira, H. N., Lopes, I., & Braga, A. C. (2020). Condition-based maintenance implementation: a literature review. Procedia Manufacturing, 51, 228–235. https://doi.org/https://doi.org/10.1016/j.promfg.2020.10.033

Wiboonrat, M. (2019). Condition Based Maintenance for Data Center Operations Management. 2019 16th International Joint Conference on Computer Science and Software Engineering (JCSSE), 73–78. https://doi.org/10.1109/JCSSE.2019.8864169

YOKOUCHI, T., TAKASHIGE, T., & Kondo, M. (2022). Anomaly Detection for Railway Vehicle Equipment Using Condition Monitoring Data. Quarterly Report of RTRI, 63, 238–243. https://doi.org/10.2219/rtriqr.63.4_238

Zuo, Y., Chandran, P., Odelius, J., & Rantatalo, M. (2023). Wayside Railway Switch and Crossing Monitoring Using Isolation Forest Anomaly Scores. Sustainability, 15(20). https://doi.org/10.3390/su152014836




DOI: https://doi.org/10.30596/jcositte.v6i2.25625

Refbacks

  • There are currently no refbacks.