Bird Sound Quality Analysis for Chirping Masters Using Mel Frequency Cepstrum Coefficiens (MFCC) and Svm Classification Algorithm

Almeranda Haryaveda Nurul Zahron, Rakhmat Kurniawan

Abstract


Birds play an important role in ecosystems as indicators of environmental health and biodiversity. In Indonesia, there are approximately 1,531 bird species, including songbirds that are popular for their melodious chirps. Bird sounds are used for communication, territorial marking, and are a key attraction in bird song competitions. However, obtaining a bird with high-quality vocalization requires specific training, one of which is the mastering method using recordings of champion bird songs. Additionally, the Support Vector Machine (SVM) algorithm has proven effective in classifying bird species based on sound, achieving 77% accuracy after noise reduction. The combination of MFCC and SVM allows for more systematic and accurate analysis of bird vocalizations. This research is expected to contribute to the field of ornithology, the development of songbird husbandry techniques, and serve as a guide for bird enthusiasts in selecting high-quality master bird sounds.

Keywords


Songbirds; Bird Classification; MFCC; SVM; Chirping Masters; Bird Sounds.

Full Text:

PDF

References


Abdurrazaq, N., & Prasetyawan, Y. Y. (2022). ANALISIS KEBUTUHAN INFORMASI BAGI PECINTA BURUNG KICAU DI KOTA PEMALANG. Jurnal Ilmu Perpustakaan.

Afida, A. M. (2020). KLASIFIKASI JENIS BURUNG BERDASARKAN SUARA MENGGUNAKAN ALGORITME SUPPORT VECTOR MACHINE. Jurnal Ilmiah Matematika, 1-6.

Alhasni, A. F. (2020). RANCANG BANGUN APLIKASI DATABASE BURUNG KICAU BERBASIS ANDROID. Solo: UNIVERSITAS MUHAMMADIYAH SURAKARTA.

Ali, M. F. (2020). KLASIFIKASI JENIS BURUNG BERDASARKAN SUARA BURUNG BERBASIS DEEP LEARNING . Surabaya: Institut Teknologi Sepuluh Nopember .

Amjad, S. H., Shahid, D., & Ali, W. (2024). Birds’ Sound Classification Using Acoustic Signals. Technical Journal, University of Engineering and Technology (UET), 53-60.

Armansyah, & Suhardi. (2025). MODEL REGRESI LOGISTIK DAN JARINGAN SYARAF TIRUAN UNTUK KLASIFIKASI MAHASISWA BERPOTENSI DROP OUT. Jurnal Teknoif Teknik Informatika Institut Teknologi Padang, 8-16.

Budiman, F. (2020). PENGENALAN SUARA BURUNG MENGGUNAKAN MEL FREQUENCY CEPSTRUM COEFFICIENT DAN JARINGAN SYARAF TIRUAN PADA SISTEM PENGUSIR HAMA BURUNG. Jurnal Nasional Teknik Elektro, 64-72.

Chyan, P. (2024). Pengantar Machine Learning. Deli Serdang: PT. MIFANDI MANDIRI DIGITAL.

Dinuriyati, I. S. (2023). Klasifikasi Pengenal Suara Kicau Burung Menggunakan Metode Linear Predictive Coding (LPC) Dan Nearest Neighbor. Malang: Centra Library Of Maulana Malik Ibrahim State Islamic University Of Malang.

Gokkon, B. (2022, September 29). Pentingnya Big Data, Memantau Perdagangan Online Burung Kicau di Indonesia. Retrieved from Mongabay: https://www.mongabay.co.id/2022/09/29/pentingnya-big-data-memantau-perdagangan-online-burung-kicau-di-indonesia/

Milal, I. S., & Hasanudin, M. (2023). KLASIFIKASI TEKS REVIEW PADA E-COMMERCE TOKOPEDIA MENGGUNAKAN ALGORITMA SVM. Jurnal Ilmiah Nasional Riset Aplikasi dan Teknik Informatika , 34-45.

Müller, A., & Guido, S. (2016). Introduction to Machine Learning with Python. O'Reilly Media.

Nanda, R., & Haerani, E. (2022). Klasifikasi Berita Menggunakan

Metode Support Vector Machine . Jurnal Nasional Komputasi dan Teknologi Informasi , 269-278.

Nurarinda, T. A., Sahertian, J., & Mahdiyah, U. (2020). Rancangan Sistem Identifikasi Jenis Burung Kicau Berdasarkan Suara Burung dengan Mel Frequency Cepstrum Coefficiens (MFCC). Seminar Nasional Inovasi Teknologi , 237-441.

Prapcoyo, H., Putra, B. P., & Perwira, R. I. (2021). IMPLEMENTATION OF MEL FREQUENCY CEPSTRAL COEFFICIENT AND DYNAMIC TIME WARPING FOR BIRD SOUND CLASSIFICATION. Prosiding Seminar Nasional Teknologi Informasi dan Kedirgantaraan, 139-147.

Putra, R. M., & Nurdiansyah, F. (2024). Klasifikasi Jenis Burung Cucak Berdasarkan Suara Menggunakan MFCC Dan Naive Bayes . JURNAL FASILKOM , 463-470 .

Rafiqah, I. N. (2024). Klasifikasi Kelayakan Mutu Crude Palm Oil Menggunakan Algoritma Support Vector Machine. Medan: Universitas Islam Negri Sumatera Utara .

Ramashini, M., Abas, E., & Mohanchandra, K. (2021). Robust cepstral feature for bird sound classification . International Journal of Electrical and Computer Engineering (IJECE) , 1477~1487 .

Ramon, E., & Nazir, A. (2022). KLASIFIKASI STATUS GIZI BAYI POSYANDU KECAMATAN BANGUN PURBA MENGGUNAKAN ALGORITMA SUPPORT VECTOR MACHINE (SVM). Jurnal Sistem Informasi dan Informatika (Simika), 143-150.

Sanjaya, M., & Salleh, Z. (2020). IMPLEMENTASI PENGENALAN POLA SUARA MENGGUNAKAN MEL-FREQUENCY CEPSTRUM COEFFICIENTS (MFCC) DAN ADAPTIVE NEURO-FUZZY INFERENSESYSTEM (ANFIS) SEBAGAI KONTROL LAMPU OTOMATIS. Al-HAZEN Jurnal of Physics, 43-54.

Sapitri, B. (2022). Klasifikasi Rumah Layak Huni Menggunakan Algoritma Support Vector Machine. Medan: Universitas Negeri Islam Sumatera Utara.

Sriani, & Hasibuan, M. S. (2022). Classification of Batu Bara Songket Using Gray-Level Co-Occurrence Matrix and Support Vector Machine . JURNAL RISET INFORMATIKA, 481-490.




DOI: https://doi.org/10.30596/jcositte.v6i2.26410

Refbacks

  • There are currently no refbacks.