Hadibroto-Ade Faisal-2016-KoNTekS 10

by Ade Faisal

Submission date: 09-Dec-2018 10:37PM (UTC+0700)

Submission ID: 1053616912

File name: Hadibroto-Ade_Faisal-2016-KoNTekS_10.docx (1.37M)

Word count: 3170

Character count: 20855

EVALUASI DAKTILITAS KURVATUR PILAR JEMBATAN BETON BERTULANG

Bambang Hadibroto¹, Ade Faisal²

Prodi Teknik Sipil, Universitas Negeri Medan, Jl. Willem Iskandar – Pasar V Medan Estate

<u>Email: hadibroto@unimed.ac.id</u>

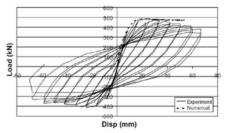
² Jurusan Teknik Sipil, UMSU, Jl. Kapten Mucthar Basri No. 3, Kota Medan, Sumatera Utara

<u>Email: faisalade@gmail.com</u>

ABSTRAK

Beraneka ragam metode untuk membuat suatu pilar jembatan beton bertulang menjadi lebih daktail, salah satunya dengan pemberian tulangan pengikat. Pemberian tulangan pengikat pada pilar akan mengakibatkan pilar tersebut memiliki kemampuan untuk berdeformasi lebih besar daripada pilar yang tidak diberi tulangan pengikat. Kontribusi pengikatan terhadap tingkat daktilitas pilar dapat dilihat dari diagram momen-kurvaturnya. Pilar yang mengalami tarikan berlebihan akan mengakibatkan retak pada pilar yang diakibatkan oleh lelehnya tulangan. Sehingga suatu saat keruntuhan akan terjadi bila tarikan yang terjadi melebihi kapasitas kekuatan dan deformasi dari pilar. Hal ini menunjukkan bahwa perlu adanya evaluasi terhadap daktilitas kurvatur kolom dengan memperhitungkan kontribusi pengikatan. Ada berbagai formulasi pemodelan diagram momenkurvatur yang telah diusulkan sampai saat ini untuk dipakai di dalam analisa tidak linear. Perbedaan pemodelan diagram momen-kurvatur ini akan memberikan pengaruh kepada hasil daktilitas kurvatur yang kemudian juga berpengaruh kepada daktilitas simpangan. Studi ini dibuat untuk mengetahui kontribusi pengikatan terhadap daktilitas kurvatur dan simpangan dengan program komputer analisa tampang CUMBIA yang berbasis model makro. Momen-kurvatur dan interaksi gaya aksial-momen dari hasil analisa CUMBIA tersebut kemudian dipakai untuk analisa pushover struktur pilar jembatan dengan SAP2000. Hasil dari studi ini menunjukkan bahwa hasil analisa pushover yang memakai keluaran program CUMBIA memberikan hasil yang mendekati kepada hasil eksperimental milik Chung dkk. (2008). Namun demikian hasil evaluasi simpangan dan daktilitas memakai elemen garis di SAP2000 tidak direkomendasikan untuk dipakai bila data momen-kurvatur dan interaksi gaya aksial-momen diambil dari CUMBIA. Hal ini disimpulkan karena hasil analisa pushover tidak mendekati kurva selubung terluar hasil uji eksperimental.

Kata kunci: pilar, momen kurvatur, daktilitas.


1. PENDAHULUAN

Belakangan ini perencanaan struktur kolom dalam hal ini pilar jembatan menuntut daktilitas struktur yang lebih tinggi. Hal tersebut disebabkan karena sering terjadi kasus keruntuhan pilar jembatan akibat gempa, penurunan dan pergeseran tanah. Untuk mencegah korban akibat keruntuhan pilar jembatan, diharapkan semua pilar jembatan memiliki perilaku daktail agar dapat menunda waktu keruntuhan akan material beton. Untuk membuat suatu pilar jembatan menjadi lebih daktail ada berbagai macam metode, diantaranya ialah dengan pemberian tulangan pengikat pada pilar jembatan. Dengan pemberian tulangan pengikat pada pilar tersebut mengakibatkan pilar yang diberi tulangan pengikat memiliki kekuatan lebih besar daripada pilar yang tidak diberi tulangan pengikat. Pada umumnya, pengikat dapat menggunakan sengkang biasa ataupun tulangan berbentuk spiral. Pengikatan pilar dengan tulangan berbentuk spiral sangat rapat (pilar spiral) memiliki perilaku yang lebih daktail daripada pengikatan pilar dengan sengkang biasa ataupun pengikatan kolom (pilar) dengan spiral kurang rapat (Nilson dkk, 2004). Pilar spiral akan dapat bertahan lebih lama (daktail) sebelum mengalami keruntuhan dibandingkan dengan pilar yang diberi pengikatan dengan sengkang biasa ataupun dengan spiral kurang rapat (kurang daktail). Hal ini menunjukkan bahwa adanya perbedaan daktilitas bisa sangat mempengaruhi kekuatan pilar dan kekuatan pilar itu sendiri dapat mempengaruhi kecepatan keruntuhan getas pada material beton.

Kontribusi pengikatan terhadap tingkat daktilitas pilar dapat dilihat dari pemodelan diagram Momen-Kurvaturnya. Pada dasarnya, kurvatur adalah gradien kemiringan dari diagram regangan. Nilai kurvatur akan bervariasi sepanjang batang dikarenakan adanya perubahan antara posisi kedalaman garis netral dan regangan antara daerah retak. Retak yang timbul pada pilar (kolom) akibat lelehnya tulangan akan mengakibatkan beton mengalami sedikit tarik (Park dan Paulay, 1976). Sehingga suatu saat beton tidak mampu lagi bertahan dan terjadilah keruntuhan. Hal ini menunjukkan bahwa perlu adanya evaluasi terhadap daktilitas kurvatur kolom dengan memperhitungkan kontribusi pengikatan. Dari paper Erduran dapat dilihat bahwa penelitian dari kolom bangunan atau pilar suatu jembatan dapat

ISBN: 978-602-60286-0-0 245

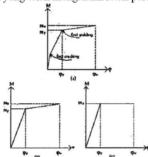
dilakukan secara eksperimental dan numerical. Paper ini memakai kolom ukuran 45,7 x 45,7 cm yg telah diuji eksperimen oleh Azizinamini.

Gambar 1. Perilaku dari kolom eksperimental dan numerik (Erduran, 2004)

Oleh erduran dilakukan penelitian ulang secara numerical dengan menggunakan analisa statik tidak linear (pushover analysis) untuk pendekatan. Hasil Gambar 1. menunjukkan bahwa hasil analisa statik tidak linear dari Erduran tidak klop dengan hasil analisa siklis eksperimen dari Azizinamini secara keseluruhan, tetapi memiliki nilai yang mendekati. Secara umum analisa beban dorong (*pushover analysis*) dapat dipakai untuk mengevaluasi kapasitas berbagai struktur terhadap gaya dan perpindahan akibat gempa. Kapasitas ini dianggap dapat mewakili keadaan gaya-perpindahan histeresis yang dihasilkan oleh gaya dinamis (ATC-55). Analisa beban dorong juga direkomendasikan dipakai untuk mengevaluasi kapasitas dinamis akibat gempa pada struktur pilar jembatan, seperti dijelaskan di dalam Buckle dkk. (2006).

Formulasi-formulasi pemodelan diagram Momen-Kurvatur yang telah memperhitungkan kontribusi pengikatan terhadap daktilitas kurvatur kolom telah diusulkan oleh peneliti seperti Chung dkk. (2008), dan masih banyak usulan lainnya. Pemodelan diagram Momen-Kurvatur oleh para peneliti inilah yang akan diperhitungkan dalam menganalisis daktilitas kurvatur penampang kolom beton bertulang. Apabila kita ingin mendesain suatu penampang pilar (kolom) dan mengecek kemampuan layan (serviceability) serta menganalisis daktilitas kurvatur penampang pilar tersebut, maka akan lebih mudah apabila menggunakan suatu program komputer atau software. Beberapa program komputer yang dapat menfasilitasi kita untuk dapat menganalisis daktilitas kurvatur penampang pilar tersebut adalah CUMBIA (Montejo dan Kowalsky, 2007). CUMBIA dibuat mengacu kepada metoda Mander (1988) yaitu sebuah model makro berbasis gaya-perpindahan.

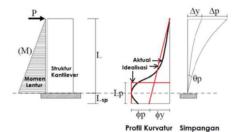
2. TINJAUAN PUSTAKA


Dalam merencanakan struktur jembatan beton yang harus diperhitungkan adalah kemampuan struktur jembatan tersebut untuk memikul beban-beban yang bekerja pada struktur tersebut, seperti beban gravitasional dan beban lateral. Jadi, dalam perencanaan struktur bangunan tahan gempa harus diperhitungkan efek dari gaya lateral yang bersifat siklis (bolak-balik) yang dialami oleh elemen struktur selama terjadinya gempa bumi. Agar struktur dapat memikul gaya lateral yang terjadi, maka diperlukan beberapa kriteria seperti daktilitas yang memadai di daerah joint dan penggunaan elemen struktur yang tahan gempa. Pelaksanaan konsep desain kapasitas struktur adalah memperkirakan urutan kejadian dari kegagalan suatu stilktur berdasarkan beban maksimum yang dialami struktur. Sehingga kita merencanakan bangunan dengan elemen-elemen struktur tidak dibuat sama kuat terhadap gaya yang direncanakan, tetapi ada elemen-elemen struktur atau titik pada struktur yang dibuat lebih lemah dibandingkan dengan yang lain dengan harapan di elemen atau titik itulah kegagalan struktur terjadi pada saat beban gempa maksimum bekerja.

Berdasarkan hal tersebut, perencanaan struktur dapat direncanakan dengan mengetahui skenario keruntuhan dari struktur tersebut dalam menahan beban maksimum yang bekerja. Pelaksanaan konsep desain kapasitas struktur adalah memperkirakan urutan kejadian dari kegagalan suatu struktur berdasarkan beban maksimum yang dialami struktur. Sehingga kita merencanakan bangunan dengan elemen-elemen struktur tidak dibuat sama kuat terhadap gaya yang direncanakan, tetapi ada elemen-elemen struktur atau titik pada struktur yang dibuat lebih lemah dibandingkan dengan yang lain dengan harapan di elemen atau titik itulah kegagalan struktur terjadi pada saat beban gempa maksimum bekerja. Berdasarkan konsep mekanisme keruntuhan ini, pertama kali terbentuk sendi plastis pada struktur balok, baru pada tahap-tahap akhir plastis terjadi pada ujung-ujung bawah kolom (strong column weak beam). Hal ini dimaksudkan agar sejumlah besar sendi plastis yang terjadi pada struktur secara daktail. Struktur yang daktail dapat memencarkan energi melalui proses pelelehan struktur dan diharapkan dapat menyerap beban gempa. Secara matematis konsep "strong column weak beam" dapat dituliskan dalam bentuk persamaan sebagai berikut:

$$\sum Mn_{balok} < \sum \frac{5}{6} Mn_{kolom} \tag{1}$$

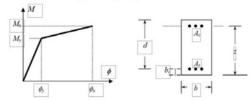
Hubungan Momen Kurvatur


Analisis momen kurvatur diperlukan untuk mengetahui daktilitas dari suatu elemen struktur yang erat kaitannya dengan redistribusi momen. Redistribusi momen mi berpengaruh dalam sebuah desain, yaitu dapat mengurangi besarnya tulangan baja yang diperlukan pada sebuah perletakan menerus. Hal ini dikarenakan dengan melakukan redistribusi momen, akan dapat mengurangi besarnya momen maksimum yang terjadi pada sebuah elemen struktur. Hal yang penting dalam suatu desain dengan beban gempa adalah daktilitas dari struktur, karena filosofi desain yang ada saat ini berdasarkan pada konsep penyerapan energi dan disipasi oleh deformasi plastis untuk bertahan terhadap sebuah gempa. Sehingga sebuah struktur yang tidak memiliki kemampuan daktilitas yang mencukupi harus didesain dengan beban gempa yang lebih besar untuk menghindari keruntuhan dari struktur tersebut. Hubungan momen kurvatur secara praktisnya dapat diidealisasikan menjadi tiga macam kurva seperti yang terlihat pada Gambar 2. Kurva yang pertama menunjukkan adanya tiga fase, yaitu fase pertama pada saat beton mulai retak, fase kedua pada saat baja mulai leleh dan fase ketiga adalah pada saat baja sudah mencapai batas dari nilai regangan gunanya. Pada Gambar 2.b dan Gambar 2.c menunjukkan kurva yang bilinier, yang pada umumnya cukup akurat untuk dapat dipergunakan. Setelah beton mengalami retak, maka hubungan antara momen kurvatur hampir linier dari titik awal nol sampai dengan titik di mana baja mulai leleh. Schingga kedua kurva ini merupakan idealisasi yang cukup akurat untuk beton yang telah mengalami retak pertama.

Gambar 2. Hubungan momen kurvatur untuk penampang beton dengan tulangan tunggal akibat kegagalan tarik.

Kondisi Batas Makro untuk Elemen Kolom Beton

Model elemen kolom yang ditinjau adalah memperkirakan pengaruh lentur, geser, deformasi aksial dan zona panjang kaku ($rigid \, length \, zone$). Kondisi batas yang ditinjau adalah keadaan leleh (vield) dan runtuh (ultimate). Panjang zona kaku (L_p) pada sebuah elemen adalah panjang dimana kondisi sendi plastis terjadi. Panjang ini dapat ditentukan menggunakan persamaan usulan Priestley dkk. (1996) untuk kondisi elemen struktur kantilever seperti pilar jembatan (Gambar 3).



Gambar 3. Kondisi batas lentur pada system kolom kantilever dan panjang sendi plastis (Priestley dkk., 1995)

$$L_p = kL_c + L_{sp} \ge 2L_{sp} \tag{2}$$

 L_c = panjang dari penampang kritis ke titik dimana terjadi lenturan balik; f_s = tegangan tarik besi tulangan memanjang (lentur); f_{su} = tegangan tarik runtuh (*fracture*) besi tulangan memanjang (lentur); f_y = tegangan leleh besi tulangan memanjang (lentur); d_{bl} = diameter tulangan lentur

Nilai-nilai momen-kurvatur untuk kondisi batas kolom beton bertulang, seperti yang ditunjukkan pada Gambar 4. dapat diperkirakan secara perhitungan manual. Untuk kurvatur pada keadaan leleh dapat diperkirakan dengan menggunakan persamaan usulan Park dan Paulay (1974) yang dimodifikasi oleh Kunnath dkk. (1992):

Gambar 4. Kondisi batas lentur (momen-kurvatur) elemen struktur beton

$$\phi_y = \left[1.05 + (C_2 - 0.05) \frac{n_0}{3} \right] \frac{f_y / E_s}{d(1 - k)}$$
 (5)

dimana

$$C_2 = \frac{0.45}{\left[0.84 + \left(\frac{A_t f_y}{b d f_c'}\right)\right]} \qquad ; \qquad n_0 = \frac{N}{\left(b d f_c'\right)}$$

 f'_c = kekuatan tekan beton umur 28 hari; f_y = kekuatan leleh baja tulangan; b = lebar penampang kolom; A_t = luasan baja tulangan tarik; N = gaya aksial; E_S = modulus elastisitas; dan k = faktor ketinggian sumbu netral, yang dihitung melalui persamaan berikut

$$k = \sqrt{\left(\frac{A_t f_y}{b d f_c^{'}} + \frac{A_c f_y}{b d f_c^{'}}\right)^2 \frac{1}{4(\varepsilon_y/\varepsilon_0)^2} + \left(\frac{A_t f_y}{b d f_c^{'}} + \frac{A_c d_c f_y}{b d^2 f_c^{'}}\right) \frac{1}{\varepsilon_y/\varepsilon_0} - \left(\frac{A_t f_y}{b d f_c^{'}} + \frac{A_c f_y}{b d f_c^{'}}\right) \frac{1}{2\varepsilon_y/\varepsilon_0}}$$
(6)

dimana A_c adalah luasan baja tulangan tekan; d_c adalah tebal selimut beton pada tulangan tekan, e_r dan g0 adalah regangan pada tegangan maksimum untuk baja tulangan dan selimut beton.

Momen lentur pada keadaan leleh (M_y) dapat diperkirakan dengan persamaan berikut Park dkk. (1987):

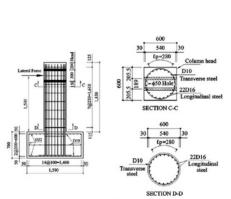
$$M_{y} = 0.5f_{c}^{'}bd^{2} \left[\left(1 + \frac{d_{c}}{d} - \frac{0.75}{1 + \frac{\Box_{c}}{\Box_{c}}} \left(\frac{\Box_{c}}{\Box_{c}} \right)^{0.7} \right) \frac{N}{bdf_{c}^{'}} + \left(2 - \frac{0.75}{1 + \frac{\Box_{c}}{\Box_{c}}} \left(\frac{\Box_{c}}{\Box_{c}} \right)^{0.7} \right) \frac{A_{t}f_{y}}{bdf_{c}^{'}} + \left(\frac{0.75}{1 + \frac{\Box_{c}}{\Box_{c}}} \left(\frac{\Box_{c}}{\Box_{c}} \right)^{0.7} - 2\frac{d_{c}}{d} \right) \frac{A_{c}f_{y}}{bdf_{c}^{'}} \alpha_{c} \right]$$
(7)

dimana

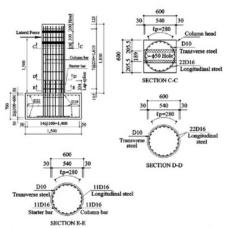
$$\Box_c = \left(1 - \frac{d_c}{d}\right) \frac{\Box_y}{\Box_0} - \frac{d_c}{d}$$

Sedangkan momen lentur pada keadaan runtuh atau batas (M_u) dapat diperkirakan dengan persamaan berikut (Park dkk., 1987):

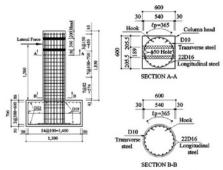
$$M_{u} = \left[1.24 - 0.15 \left(\frac{A_{t} f_{y}}{b d f_{c}^{'}} \right) - 0.5 \left(\frac{N}{b d f_{c}^{'}} \right) \right] M_{y}$$
 (8)

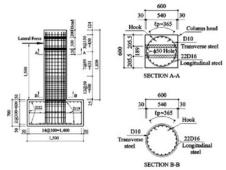

Kurvatur elemen kolom beton bertulang dapat diperkirakan dengan menganggap kolom berperilaku sama dengan elemen balok sebagaimana persamaan yang diusulkan oleh Park dan Paulay (1976):

$$\phi_u = \frac{0.85 f_c' b \Box \Box_c}{A_t f_y - A_c f_y} \tag{9}$$

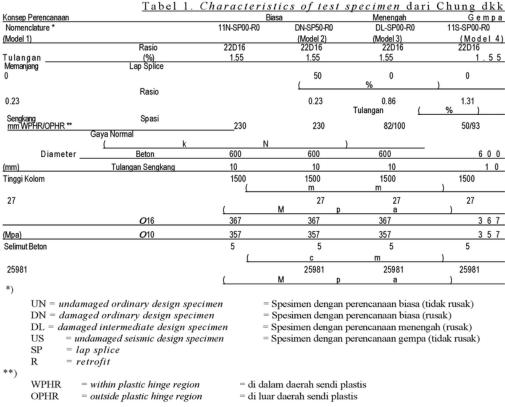

dimana $_{s1}$ =0.85 untuk kuat tekan beton f_c^* < 4000 psi, dan dapat dikurangi secara berterusan sebesar 0.05 untuk setiap 1000 psi bila melebihi 4000 psi; sedangkan $_s$ adalah regangan beton pada penampang kolom bagian serat tekan.

3. METODOLOGI PENELITIAN

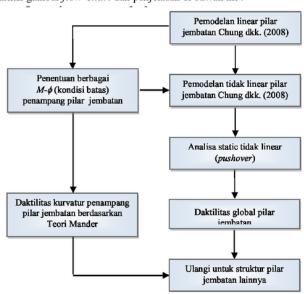

Penelitian ini dibuat model linear pilar jembatan beton bertulang berdasarkan studi Chung dkk. (2008) yaitu sebanyak 4 model (Gambar 5.1. - 5.4.).


Gambar 5.1. Model 1 Chung dkk. (2008) section C-C dan D-D

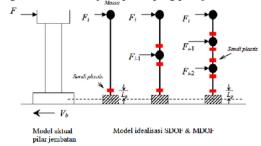
Gambar 5.2. Model 2 Chung dkk. (2008) section C-C, D-D dan E-E



Gambar 5.3. Model 3 Chung dkk. (2008) section A-A dan B-B


Gambar 5.4. Model 4 Chung dkk. (2008) section A-A dan B-B

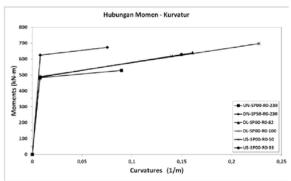
Ke-empat model pilar tersebut memiliki karakteristik specimen yang berbeda-beda berdasarkan kepada penggunaan material dan perencanaan. Hal ini dapat dilihat dalam tabel 1.


Metodologi Simulasi

Penelitian dibuat berdasarkan gambar flow-chart dan penjelasan di bawah ini :

Gambar 6. Bagan alir metodologi yang dipakai

- a. Menghitung momen-kurvatur (M-) penampang pilar jembatan sebagai kondisi batas pada analisa statik tidak linear. Momen-kurvatur dihitung berdasarkan model makro (menggunakan program CUMBIA). Hasil yang diharapkan adalah dalam bentuk gaya momen-kurvatur dan interaksi gaya momen-aksial. Daktilitas kurvatur berbagai penampang dapat diperoleh pada langkah ini.
- b. Membuat model linear pilar jembatan berdasarkan studi Chung dkk. (2008) menggunakan SAP2000 yaitu sebanyak 4 model (lihat Gambar 5.1. s/d Gambar 5.4.). Pada langkah ini juga dibuat model struktur pilar jembatan dengan menggunakan titik massa terpusat (*lumped mass*) lebih dari satu buah (Gambar 7.).
- c. Membuat model tidak linear struktur pilar jembatan Chung dkk. (2008) menggunakan SAP2000 (4 model) dengan memasukkan kondisi batas M-, pada titik sendi plastis (titik ini berjarak sepanjang Lp dari perletakan) model linear pada langkah 1, seperti yang ditunjukkan pada Gambar 7. Untuk keempat model tidak linear yang akan dibuat masing-masing terdiri dari 1 model berderajat kebebasan tunggal (SDOF).
- d. Menganalisa struktur pilar jembatan secara statik tidak linear menggunakan metoda pushover dengan bantuan program SAP2000 untuk mendapatkan hubungan global gaya-perpindahan. Pada langkah ini juga diidentifikasi kondisi leleh dan sendi plastis yang terjadi pada struktur pilar jembatan.
- e. Mengulangi langkah-langkah di atas untuk jenis penampang pilar jembatan lainnya.


Gambar 7. Model SDOF dan MDOF pilar jembatan yang diberikan distribusi gaya geser lateral F_i untuk mewakili gaya geser dasar gempa

4. ANALISA HASIL PENELITIAN

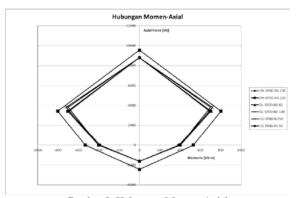
Grafik Hubungan Momen-Kurvatur

Tabel 2. Hubungan Momen-Kurvatur

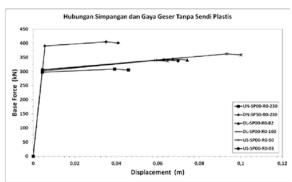
Curvature							Moment		El Effektif
	No	Characteristics of							Yield
Test Specir (1/m)	men		First Yield	Ultimate	Ultimate/Yield	First Yield	Ultimate		
(kN-m) (1/m)						(kN-m)		Ultimate/Yield	Moment/Yield Curvature
1		UN-SP00-R0-230	0.00760	0.08968	11.800	482.060	528.240	1.096	63428.947
2		DN-SP50-R0-230	0.00799	0.07544	9.442	624.690	672.900	1.077	78183.980
3		DL-SP00-R0-82	0.00772	0.16105	20.861	488.470	639.000	1.308	63273.316
4		DL-SP00-R0-100	0.00768	0.13986	18.211	485.820	618.720	1.274	63257.813
5		US-SP00-R0-50	0.00772	0.22738	29.453	489.370	696.910	1.424	63389.896
6		US-SP00-R0-93	0.00769	0.14967	19.463	486.700	628.770	1.292	63289.987

Gambar 8. Hubungan Momen-Kurvatur

Grafik Hubungan Momen-Axial

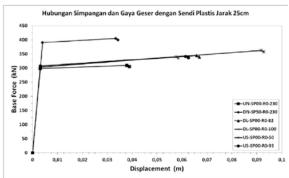

Tabel 3. Hubungan Momen-Axial

		Max. Comp	ression Load	Max. Tens	sion Load	M	aximum Moment	Moment (Mxx)	at P = 0
No	Characteristics of Test Specimen	P (kN)	M3 (kN-m)	P (kN)	M3 (kN-m)	M3 (kN-m)	P at Max. Moment (kN)	M3 (kN-m)	P (kN)
1	UN-SP00-R0-230	8802.190	0	-1630.080	0	690.620	3435.330	386.520	0
2	DN-SP50-R0-230	9552.730	0	-2445.120	0_	801.570	3435.330	531.480	0
3	_DL-SP00-R0-82	8789.760	0	-1630.080	0_	703.790	3435.330	400.230	0
4	DL-SP00-R0-100	8792.580	0	-1630.080	0	699.510	3817.040	400.330	0
5	US-SP00-R0-50	8781.340	0	-1630.080	0	718.210	3817.040	402.500	0
6	_US-SP00-R0-93	8791.580	0	-1630.080	0_	703.440	3435.330	399.410	0


Grafik Pushover Analysis

Grafik Hubungan Simpangan dan Gaya Geser Tanpa Sendi Plastis

			Tabel 4. Hubungan Simpangan dan Gaya Geser Tanpa Sendi Plastis										
Displaceme No	Characteristics of			<u>(m)</u>				Base Force (k N)		
1		Test Specimen		2	3	4	1	2	3				4
	1	UN-SP00-R0-230	0_	0.004311	0.039175	0.045964	0	297.736	308.619		305.	475	
	2	DN-SP50-R0-230	0_	0.005648	0.035054	0.040824	0	390.021	404.611		400.	601	
	3	DL-SP00-R0-82	0	0.004443	0.067307	0.074274	0	306.814	343.965		340.	625	
	4	DL-SP00-R0-100	0_	0.004379	0.059042	0.064907	0	302.392	339.514		336.	176	
	5	US-SP00-R0-50	0	0.004428	0.093240	0.100201	0	305.787	362.162		358.	441	
	6	US-SP00-R0-93	0	0.004436	0.062865	0.069736	0	306.329	341.360		338.	079	


Gambar 9. Hubungan Momen-Axial

Gambar 10. Hubungan Simpangan dan Gaya Geser Tanpa Sendi Plastis Grafik Hubungan Simpangan dan Gaya Geser dengan Sendi Plastis Jarak 25cm

Tabel 5. Hubungan Simpangan dan Gaya Geser dengan Sendi Plastis Jarak 25cm

	No	Characteristics of		Displacement			BaseForce	
Test Specimen			2	3	4 1	2	(4
	1	UN-SP00-R0-230	0 <u>0,003071</u>	0,0378890,038976	0	297,736	308,619 304	153
	2	DN-SP50-R0-230	0 <u>0,004022</u>	0,0333680,034299	0	390,021	404,611 398	768
	3	DL-SP00-R0-82	00,003164	0,0658740,067041	0	306,814	343,965 338	993
	4	DL-SP00-R0-100	0 <u>0,003119</u>	0,0576270,058591	0	302,392	339,52 334	<u>611</u>
	5	US-SP00-R0-50	0 <u>0,003154</u>	0,0917310,092828	0	305,787	<u>362,162</u> 356	928
	6	US-SP00-R0-93	00,003159	0,0614430,062606	0	306,329	341,36 336	425

Gambar 11. Hubungan Simpangan dan Gaya Geser dengan Sendi Plastis Jarak 25cm

5. KESIMPULAN

Berdasarkan hasil simulasi dan analisis terhadap model pilar jembatan yang menggunakan program CUMBIA, serta SAP2000 maka dapat ditarik beberapa kesimpulan sebagai berikut :

- Dari hasil semua analisa penampang tersebut diperoleh bahwa specimen US-SP00-R0-50 memberikan hasil daktilitas kurvatur terbesar. Hal ini sesuai dengan keadaan tulangan yg dimiliki oleh specimen tersebut dimana jumlah tulangan geser lebih banyak dipakai pada specimen tersebut karena specimen direncanakan untuk menahan gaya gempa.
- Nilai momen lentur leleh spesimen DN-SP00-R0-230 lebih rendah dibanding dengan nilai momen lentur leleh yang lainnya. Hal ini disebabkan jarak tulangan sengkang yang terlampau jauh yaitu 230cm. Nilai momen lentur leleh yang paling besar didapat pada spesimen DN-SP50-R0-230. Hal ini disebabkan adanya penambahan pada jumlah tulangan utama.
- Kekuatan leleh (yield strength) paling rendah yang dihasilkan melalui program CUMBIA didapati pada spesimen DN-SP00-R0-230. Hal yg sama juga ditemukan untuk kekuatan batas (ultimate strength).

- 4. Spesimen DN-SP50-R0-230 memberikan simpangan leleh yg lebih awal terjadi dibanding dengan spesimen lainnya. US-SP00-R0-50 memberikan nilai simpangan batas yg paling besar. Nilai-nilai simpangan batas melalui yang dihasilkan program CUMBIA terlampau besar, hal ini terjadi dikarenakan metode yg dipakai dalam menjalankan analisa penampang yaitu metode makro. Untuk daktilitas global, program Cumbia memberikan hasil yg paling besar pada specimen DN-SP50-R0-230.
- 5. Evaluasi kekuatan (gaya geser) pilar beton jembatan menggunakan model komputer melalui elemen garis di SAP2000 dapat dihandalkan bila data momen-curvature dan interaksi gaya aksial-momen diambil berdasarkan program analisa penampang Cumbia. Sedangkan evaluasi simpangan dan daktilitas memakai elemen garis di SAP2000 tidak direkomendasikan bila data momen-curvature dan interaksi gaya aksial-momen diambil dari program analisa penampang Cumbia, dikarenakan tidak mendekati hasil eksperimental pilar beton jembatan yang ada.

DAFTAR PUSTAKA

- ATC-40 (1996). Seismic Evaluation and Retrofit of Concrete Buildings. Report SSC 96-01, California Seismic Safety Co 13 ission, Penerbit: Applied Technology Council, Redwood City.
- ATC-55 (2005) FEMA 440: Improvement of Nonlinear Static Seismic Analysis Procedures. Applied Technology Council (ATC-55 Project), Redwood City.
- "Bi 6ge in the 1994 Northridge earthquake". Technical Report 08, PacificEarthquakeEngineeringResearchCenter. Buckle, I., Friedland, I., Mander, J., Martin, G., Nutt, R., & Power, M. (2006). Seismic retrofitting manual for highway structures: Part 1-bridges (No. FHWA-HRT-06-032).
- Chen, W. & Duan, 2 (2000). Bridge Engineering Handbook. Boca Raton: CRC Press, 2000
- Chopra, A. (2001). Dynamics of Structures: Theory and Applications to Earthquake Engineering. Prentice Hall, New York.
- Chopra, A.K. and Goel, R.K. (2001). A Modal Pushover Analysis Procedure to Estimate Seismic Demands for Buildings. Report No. 2001/03. PacificEarthquake Engineering ResearchCenter, University of California, Berkelev.
- Chung, Y.-S., Park, C.K. dan Meyer, C. (2008). Residual Seismic Performance of Reinforced Concrete Bridge Piers
- After Moderate Earthquakes, ACI Structural Journal, V. 105, No. 1, hal.: 87-95.
- CSI (2005). SAP 2000 Linear and Nonlinear Static and Dynamic Analysis and Design of Three-Dimensional
- 12 Structures: Basic Analysis Reference Manual. Computers and Structures, Inc. Berkeley, California
- Erduran, E., dan Yakut, A. (2004). *Drift based damage functions for reinforced concrete columns*. Computers & structures, 82(2), 121-130
- Kunnath, S.K. (2006). Performance-Based Seismic Design and Evaluation of Building Structures, di dalam Earthquake Engineering for Structural Design, Editor: Chen, W.-F. dan Lui, E.M., Penerbit: CRC Press LLC, Boca Rate 11
- Kunnath, S. K., Reinhorn, A. M., and Abel, J. F. (1992), A Computational Tool for Seismic Performance of Reinforced Concrete Buildings, Computers and Structures, 41(1), hal.: 157-173.
- Mander, J. B., Priestley, M. J. N., dan Park, R. (1988). Theoretical stress-strain model for confined concrete, Journal of Structural Engineering, ASCE, 114 (8), hal.: 1804-1825.
- Mander, J. B., Priestley, M. J. N., and Park, R. (1988). Observed stress-strain model for confined concrete, *Journal of Structural Engineering*, ASCE, 114 (8), hal.: 1827-1849.
- Montejo, L.A. dan Kowalsky, M.J. (2005). Cumbia: Set of Codes for the Analysis of Reinforced Concrete Members,
- Technical Report No.: IS-07-01, Constructed Facilities Laboratories, North Carolina State Unive 3 ity. Park, R. dan Paulay, T. (1976). Reinforced Concrete Structures, Penerbit: John Wiley and Sons, New York Park,
- Y. J., Ang, A. H-S., and Wen, Y.K. (1987), Damage-Limiting Assismic Design of Buildings, Earthquake Spectra, 3(1), hal.: 426.
- Paulay, T. dan Priestley, M.J.N. (1992). Seismic Design of Reinforced Concrete and Masonry Buildings, Penerbit: ohn Wiley and Sons, New York.
- Priestley, M.J.N., Seible, F., Calvi, M.G. (1995). Seismic Design and Retrofit of Bridges, Penerbit: John Wiley and Sons, New York.
- Putra, H dan Hayyu, S (2008). "Retrofitting Struktur Angunan Beton Bertulang Di Bawah Pengaruh Gempa Kuat". Skripsi, ITB.
- Wibisono, C dan Lie, Hendro (2008), "Modal Pushover Analysis Struktur Gedung Beton Bertulang Di Bawah Pengaruh Beban Gempa Kuat", Skripsi, ITB.
- Wigan, L dan Liman, F.D. (2001), "Program Komputer untuk Desain dan Analisis Penampang Balok dan Kolom Beton", Tugas Akhir, Universitas Petra.

Hadibroto-Ade Faisal-2016-KoNTekS 10

ORIGIN	IALITY REPORT			
•	2% ARITY INDEX	% INTERNET SOURCES	% PUBLICATIONS	12% STUDENT PAPERS
PRIMAF	RY SOURCES			
1	Submitted Student Paper	d to Sultan Agu	ng Islamic Univ	versity 2%
2	Submitted Student Paper	d to Asian Instit	ute of Technolo	ogy 1 %
3	Submitted Student Paper	d to The Univer	sity of Memphi	s 1%
4	Submitted Student Paper	d to Chulalongk	orn University	1%
5	Submitted Student Paper	d to Universiti T	eknologi MAR	1 %
6	Submitted Student Paper	d to Western W	ashington Univ	rersity 1 %
7	Submitted Student Paper	d to University o	of Adelaide	1%
8	Submitted del Peru Student Paper	d to Pontificia U	Iniversidad Cat	olica 1 %
Q	Submitted	d to Caledonian	College of	

	Engineering Student Paper	1 %
10	Submitted to University of Leeds Student Paper	1%
11	Submitted to Unviersidad de Granada Student Paper	<1%
12	Submitted to University of Sheffield Student Paper	<1%
13	Submitted to Universitas Bung Hatta Student Paper	<1%
14	Submitted to Udayana University Student Paper	<1%
15	Submitted to Anglia Ruskin University Student Paper	<1%
16	Submitted to Kingston University Student Paper	<1%

Off

Exclude quotes Off

On

Exclude bibliography

Exclude matches