Syaifullah -Ade Faisal - 2015 -Seminar HASTAG VI

by Ade Faisal

Submission date: 09-Dec-2018 10:47PM (UTC+0700)

Submission ID: 1053619482

File name: Syaifullah_-Ade_Faisal_-_2015_-_Seminar_HASTAG_VI.docx (742.38K)

Word count: 3052

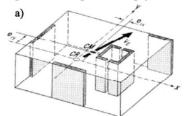
Character count: 18781

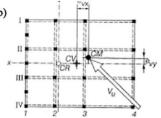
PERILAKU SIMPANGAN STRUKTUR TIDAK SIMETRIS HORIZONTAL DENGAN VARIASI EKSENTRISITAS KEKAKUAN DAN FAKTOR MODIFIKASI RESPON AKIBAT GETARAN GEMPA PULSE DAN TANPA PULSE

Syaifullah¹, Ade Faisal^{2,3}, Hotma Panggabean²

¹Alumni Program Studi Magister Teknik Sipil Universitas Sumatera Utara (USU)

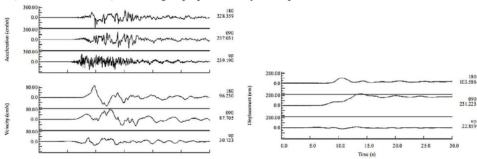
E-mail: syaifaligayo@gmail.com


²Program Studi Magister Teknik Sipil, Universitas Sumatera Utara (USU) Program Studi Teknik Sipil, Universitas Muhammadiyah Sumatera Utara (UMSU)


Abstrak: Torsi pada bangunan dapat terjadi akibat distribusi massa dan kekakuan yang tidak simetris. Studi parametrik ini dilakukan pada bangunan dengan eksentrisitas kekakuan (e_r) dan variasi dari respon modifikasi gempa (R) dengan memodelkan struktur 2D dan melihat perilaku simpangan struktur tersebut pada sisi yang kaku dan sisi yang fleksibel. Struktur tersebut akan dianalisisis dalam kondisi elastis dan inelastis dengan metode Riwayat Waktu dan rekaman gempa dengan karakteristik gempa Pulse dan tanpa Pulse. Hasil studi parametrik diperoleh respon simpangan yang signifikan pada sisi fleksibel dibandingkan dengan di sisi kaku. Perpindahan yang tidak seragam ini membuat struktur mengalami puntir/torsi. Efek torsi kondisi inelastis memiliki deformasi yang lebih signifikan dibandingkan deformasi kondisi elastis dengan rasio simpangan mencapai 1: 2,678. Sementara itu, kenaikan faktor modifikasi respon gempa (R) menunjukkan peningkatan simpangan seiring meningkatnya faktor-R dan semakin besarnya nilai eksentrisitas pusat kekakuan (e_r). Efek getaran gempa dengan pulse memiliki karakteristik yang dapat menyebabkan perpindahan yang signifikan di sisi fleksibel dibandingkan dengan getaran gempa tanpa Pulse, kenaikan deformasi akibat gempa pulse berkisar 10% sampai dengan 15%.

Kata kunci: Struktur tidak simetris, eksentrisitas kekakuan, faktor modifikasi respon (R), getaran gempa *pulse* dan tanpa *Pulse*.

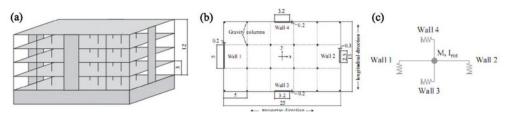
1. Pendahuluan


Salah satu efek yang terjadi ketika beban gempa bekerja pada bangunan yang tidak simetris adalah efek torsi. Torsi pada bangunan selama getaran gempa terjadi karena penyebab yang bervariasi, namun yang paling sering terjadi adalah akibat distribusi massa dan kekakuan yang tak simetris (Stathopoulos dan Anagnostopoulos, 2004). Bukan hanya pada bangunan yang tidak simetris secara bentuk, namun bangunan dengan bentuk simetris tetapi tidak berimpitnya pusat kekuatan, kekakuan dan massa juga merupakan penyebab terjadinya efek torsi (Gambar 1). Adanya perbedaan posisi ketiga hal tersebut menyebabkan munculnya eksentrisitas. Ketika gempa terjadi, getaran gempa menyebabkan konsentrasi tegangan pada titik tertentu, sehingga titik yang tidak memiliki kekuatan yang sama akan menyebabkan distribusi yang tidak merata dan menimbulkan torsi. Torsi dapat menyebabkan masalah pada elemen penahan gaya lateral ditepi bangunan dan meningkatnya simpangan yang besar seiring berkurangnya kekuatan.

Gambar 1: Ilustrasi pusat massa (CM), pusat kekakuan (CR) dan pusat kekuatan (CS) yang tidak berimpit pada a) struktur 3D dan b) bidang 2D (Paulay, 1989).

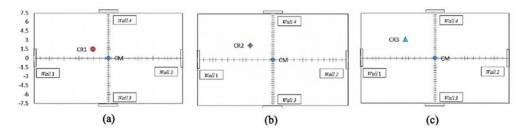
Deformasi yang beragam ini dapat menyebabkan perilaku struktur bangunan menjadi inelastis sehingga menyebabkan kerusakan besar pada bangunan. Untuk itu perlu dilakukan studi terhadap bangunan tidak simetris dengan menggunakan analisa nonlinier/inelastis dengan memberikan pengaruh gempa sesuai dengan karakteristik pola gelombang yaitu *pulse* atau tanpa *Pulse*. *Pulse motion* berasal dari istilah *velocity pulse*. Getaran gempa yang memiliki karakteristik pulse merupakan sebuah akibat dari kondisi yang disebut *forward directivity* yang berasal dari gempa dekat (Rrup < 10 KM). Gempa ini terjadi ketika regangan elastis yang secara bertahap terakumulasi pada suatu patahan melepaskan energinya yang biasanya disebut proses *elastic rebound*. Energi yang dilepaskan ini akan menghasilkan gerakan tanah yang dinamis dan berlangsung selama beberapa detik hingga beberapa menit (Sommerville, 2003). Contoh gempa pulse ditunjukkan pada Gambar 2.

Gambar 2: Rekaman gempa kuat (*pulse motion*) 1999 di Kocaeli, Turki-Yarimca (Sommerville, 2003).


Dalam perencanaan bangunan gedung yang mempertimbangkan beban gempa juga harus direncanakan dengan berbagai jenis tingkat daktilitas sesuai kebutuhan gedung tersebut. Salah satunya dengan memperhatikan koefisien modifikasi respons (R) pada perancangan desain struktur dimana koefisien modifikasi respons ini sangat berpengaruh terhadap besarnya gaya-gaya dalam yang ditimbulkan pada analisis perancangan serta pengaruhnya terhadap penggunaan elemen-elemen konstruksi yang sangat menentukan kekuatan struktur, biaya maupun dimensi elemen struktur tersebut. Namun, tidak ada aturan yang jelas mengenai pengaruh dan batasan koefisien modifikasi respon pada bangunan tidak simetris ataupun kondisi inelastis.

Secara spesifik, dalam tulisan ini akan dilakukan studi parametrik mengenai bangunan yang memiliki konfigurasi tidak simetris pusat kekakuan (Centre of Rigidity/CR) terhadap pusat massa (Centre of Mass/CM) yang tidak berimpit dengan memberikan pengaruh eksitasi gempa karakteristik pulse dan tanpa Pulse dalam dua arah untuk beragam faktor modifikasi respons (R) pada bangunan tersebut. Dalam studi parametrik ini akan dibuat pemodelan 2D dalam arah horizontal pada program Ruaumoko 3D sehingga dapat dilihat deformasi lantai struktur bangunan pada kondisi elastis dan inelastis.

2. Metode Penelitian


2.1 Pemodelan Struktur

Dalam studi parametrik ini, pemodelan disadur seperti yang pernah dimodelkan oleh Beyer (2007) yang menggunakan model struktur beton bertulang dengan tingkat 4 lantai (Gambar 3a) dengan dinding penahan lateral di setiap sisi bangunan (Gambar 3b) yang memiliki kekakuan berbeda dan perilaku penahan lateral dimodelkan dalam bentuk pegas (Gambar 3c).

Gambar 3: a) model 3D; b) model 2D; c) model dengan dinding penahan diwakilkan oleh pegas (Beyer, 2007).

Dalam penelitian ini, model tersebut dikembangkan menjadi tiga variasi dengan eksentrisitas kekakuan 10%, 15% dan 20% seperti ditunjukkan pada Gambar 4.

Gambar 4: Variasi model: a) eksentrisitas kekakuan 10%, b) eksentrisitas kekakuan 15%, c) eksentrisitas kekakuan 20%.

2.2 Data Rekaman Gempa

Seluruh data rekaman gempa dalam penelitian ini diambil dari database gempa di *Pacific Earthquake Engineering Research* (PEER) *Next Generation Attenuation* (NGA). Rekaman gempa dengan karakteristik *pulse* terdiri dari 10 rekaman (Tabel 1).

	Tabe	:1 1: Dat	a r	ekam	a n	g e m	p a	P u	lse.
		Earthquake Name	Year	Station	Mag N	/lechanism	Rjb	Rrup	Vs30
No Period (sec	Tp-Pulse			Name			(km)	(km)	(m/sec)
1	1.092	Kobe, Japan	1995	23	6.9	strike slip	0.94	0.96	269.14
2	1.372	Northridge-01	1994	Newhall -	6.69	Reverse	3.16	5.92	269.14
3	2.828	Kobe, Japan	1995	Port Island	6.9	strike slip	3.31	3.31	370.52
4	3.528	Northridge-01	1994	Sylmar	6.69	Reverse	0	5.19	370.52
5	5.341	Chi-Chi, Taiwan	1999	CHY024	7.62	Reverse	9.62	9.62	427.73
6	7.791	Kocaeli, Turkey	1999	Arcelik	7.51	strike slip	10.56	13.4	353.63
7	6.265	Imperial valley	1979	El Centro	6.53	strike slip	5.09	5.09	202.26
8	6.265	Imperial Valley	1985	El Centro	5.12	strike slip	6.01	6.01	282.5
9	9.128	Landers	1992	Barstow	7.28	strike slip	34.86	34.8	370.08
10	6.188	Tabas, Iran	1978	Tabas	735	Reverse	1.79	2.05	766.77

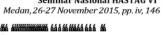
Rekaman gempa dengan karakteristik tanpa *Pulse* terdiri dari 10 rekaman gempa berbeda seperti yang ditunjukkan pada Tabel 2.

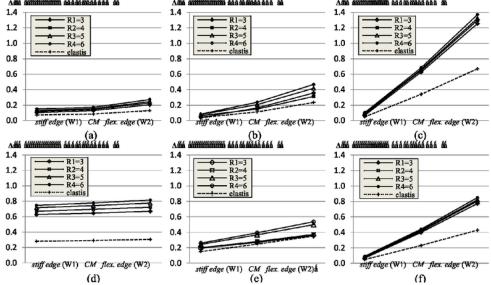
	<u>Tabel 2: Data</u>	r e	<u>kaman</u> g	e m	pa tar	1 ра	P u l	s e .
No	Earthquake Name	Year	Station Name	Mg	Mechanism	Rjb	Rrup	Vs30
_						(km)	(km)	(m/sec)
1	Kobe Japan	1995	Amagasaki	6.9	strike slip	11.34	11.34	256
2	Northridge-02	1994	Newhall - Fire Sta	6.05	Reverse	7.36	8.29	269.14
3	Kobe Japan	1995	Chihaya	6.9	strike slip	49.91	49.91	609
4	Northridge-06	1994	Sylmar	5.28	Reverse	6.79	14.87	370.52
5	Chi-Chi Taiwan	1999	CHY002	7.62	Reverse	24.96	24.96	235.13
6	Kocaeli Turkey	1999	Afyon Bay	7.51	strike slip	207.81	207.8	225.6
7	Imperial Valley	1979	El Centro Array #1	6.53	strike slip	19.76	21.68	237.33
8	Kern	1952	LA - Hollywood	7.36	Reverse	114.62	117.8	316.46
9	Trinidad	1980	Rio Dell Overpass	7.2	strike slip	76.06	76.26	311.75
10	Tabas, Iran	1978	Bajestan	7.35	Reverse	119.77	120.8	377.56

Studi parametrik ini akan dianalisis menggunakan program Ruaumoko 3D dengan eksitasi gempa dua arah untuk setiap variasi model dalam kondisi elastis (60 model) dan kondisi inelastis (240 model) dengan metode riwayat waktu (*time history*). Variasi koefisien modifikasi respon berdasarkan SNI 03-1726-2012, yaitu $R_1 = 3$, $R_2 = 4$, $R_3 = 5$, dan $R_4 = 6$ dengan kondisi kegempaan di Aceh pada tanah lunak.

3. Hasil dan Diskusi

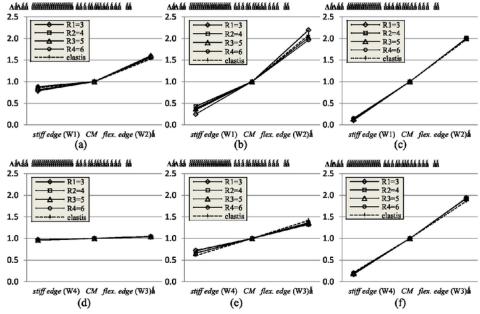
Output yang diambil adalah simpangan maksimum struktur pada empat titik, yaitu simpangan wall 1, wall 2, wall 3 dan wall 4 pada arah-x (transverse direction) dan arah-y (longitudinal direction). Simpangan pada arah-x didominasi oleh wall-4 sebagai sisi kaku dan wall-3 sebagai sisi yang fleksibel. Sedangkan simpangan untk arah-y didominasi oleh wall-1 sebagai sisi kaku dan wall-2 sebagai sisi yang fleksibel. Simpangan maksimum tersebut akan diambil sebagai nilai rata-rata akibat eksitasi getaran gempa pulse (10 rekaman) dan no -pulse (10 rekaman).


3.1 Periode Fundamental Bangunan


Tiga model yang telah dikembangkan memiliki periode fundamental yang bervariasi. Periode fundamental model planar 2D dengan variasi tiga eksentrisitas pada Tabel 3 menunjukkan mode pertama (T₁) murni mengalami translasi pada arah transversal (sumbu-x) dan mode kedua (T₂) merupakan gabungan dari translasi pada arah longitudinal (sumbu-y) dan juga rotasional. Sedangkan pada mode 3 (T₃) cenderung mengalami rotasi dengan sedikit translasi pada arah longitudinal. Hal ini dapat dilihat dari kesamaan nilai pada mode kedua (T₂)

	T a	abel 3: Period Model struktur	le fundan Eksentrisitas	nenta /	l ba <mark>15 g u</mark> Periode fund	
<u>& (%)</u>				T ₁ (s)	T ₂ (s)	T3 (s)
	1	Model Beyer	24	0.97	0.88	0.48
	2	Model-1	10	1.22	0.52	0.32
	3	Model-2	15	0.84	0.59	0.31
	4	Model-3	20	1.60	0.57	0.30

3.2 Deformasi Struktur akibat Gempa Pulse


Terlihat kenaikan yang sangat signifikan pada sisi fleksibel pada setiap kenaikan eksentrisitas seperti yang ditunjukkan Gambar 5a,b dan c pada arah-y. Artinya terjadi rotasi di sisi fleksibel dengan melihat simpangan yang besar dibandingkan di sisi yang kaku. Sedangkan pada arah-x, rasio simpangan di sisi kaku dan sisi fleksibel cenderung mengalami perpindahan yang seragam (Gambar 5d,e,f) dan pada umumnya lebih kecil dibandingkan simpangan arah-y.

Gambar 5: Simpangan rata-rata (Δ) pada sisi kaku dan sisi fleksibel untuk setiap variasi eksentrisitas kekakuan (10%, 15%, 20%) dan faktor modifikasi respon (R₁, R₂, R₃, R₄) akibat gempa *Pulse*.

Gambar 6 merupakan normalisasi simpangan terhadap simpangan di pusat massa (ACM) pada sisi kaku dan sisi yang fleksibel untuk setiap eksentrisitas arah-y (Gambar 6a,b dan c) dan arah-x (Gambar 6d,e dan f). Kenaikan eksentrisitas menunjukkan perpindahan yang signifikan di sisi kaku dan sisi fleksibel terutama pada arah-y, hal ini membuat perilaku torsi terjadi pada struktur. Kenaikan faktor-R dapat dilihat tidak terlalu mempengaruhi trend normalisasi perpindahan, sehingga dapat dikatakan bahwa faktor -R tidak terlalu berpengaruh signifikan terhadap perilaku torsi (efek torsi), namun faktor-R akan sangat berpengaruh terhadap perpindahan translasi.

Gambar 6: Normalisasi simpangan (Δ/Δcм) pada sisi kaku dan sisi fleksibel setiap variasi eksentrisitas kekakuan (10%, 15%, 20%) dan faktor modifikasi respon (R1, R2, R3, R4) akibat gempa Pulse.

3.3 Deformasi Struktur akibat Gempa Tanpa Pulse

Simpangan akibat getaran gempa tanpa *Pulse* menunjukkan *trend* grafik deformasi yang tidak terlalu berbeda, namun deformasi dan normalisasi cenderung lebih kecil dibandingkan deformasi akibat getaran gempa pulse, hal ini berkisar antara 5% sampai dengan 10%.

3.4 Simpangan Kondisi Elastis dan Inelastis akibat Eksentrisitas Kekakuan

Simpangan pada kondisi elastis cenderung selalu lebih kecil dibandingkan dengan kondisi inelastis, walaupun pada normalisasi simpangan terhadap pusat massa (CM), bentuk simpangannya mirip dengan inelastis. Simpangan inelastis dapat mengalami kenaikan dari 10%-150% dari simpangan kondisi elastis untuk getaran gempa yang sama. Pada kasus ini terlihat bahwa kekakuan kondisi elastis cenderung konstan, berbeda dengan inelastis, sehingga deformasi yang dihasilkan kondisi inelastis sangat besar. Dari sudut pandang kualitatif, efek torsional secara global pada struktur inelastis mirip dengan yang elastis, karena perbedaan antara respon elastis dan inelastis lebih jelas di bagian translasi daripada bagian rotasi. 2) Secara kuantitatif, perubahan respon tergantung pada besarnya deformasi inelastis.

Simpangan pada sisi fleksibel selalu lebih besar dibandingkan simpangan pada sisi kaku, hal ini membuat struktur berdeformasi tidak seimbang sehingga membuat sudut puntir yang menandakan terjadinya rotasi pada struktur. Semakin besar nilai eksentrisitas kekakuan maka struktur akan mengalami deformasi yang lebih besar, terutama pada sisi yang fleksibel.

3.5 Efek Getaran Gempa Pulse dan Tanpa Pulse

Getaran gempa sangat mempengaruhi perilaku torsi, terutama pada sisi yang lebih kaku. Pada studi ini ditemukan bahwa secara keseluruhan deformasi yang besar didominasi oleh gempa dengan pulse yang membuat deformasi di sisi fleksibel bisa mencapai 120% dari pusat massa. Dalam studi ini, secara keseluruhan diperoleh range antara perpindahan terhadap pusat massa lebih besar dari 1 (satu) di sisi fleksibel dan range antara perpindahan yang lebih kecil dari satu terdapat di bagian kaku. Dapat disimpulkan bahwa struktur tersebut merupakan struktur dengan sistem torsi kaku (torsionally stiff structure) yang artinya dua mode pertama mengalami translasi dan mode ketiga rotasi.

3.6 Pengaruh Faktor-R Pada Bangunan Tidak Simetris

Disebutkan bahwa ketika struktur lebih signifikan dalam sistem torsi kaku, maka cenderung respon inelastis pada sisi fleksibel akan lebih besar dari respon elastis. Sistem dengan torsi kaku dalam desain perlu dibuat nilai faktor modifikasi gempa yang rendah, karena deformasi yang besar terjadi saat nilai daktilitas struktur tersebut tinggi. Daktilitas yang semakin besar juga akan menyebabkan deformasi translasi yang semakin besar, walaupun respon torsi akibat daktilitas tidak terlalu signifikan, namun pusat eksentrisitas yang besar membuat simpangan yang besar.

Begitu kompleksnya perilaku struktur tidak simetris terutama dalam kondisi inelastis membuat perhatian yang serius dalam melakukan analisa dan desain. Hal-hal penting dalam menentukan perilaku nonlinier struktur tidak simetris, diantaranya: Daktilitas struktur (hubungan gaya-perpindahan), letak pusat kekuatan dan kekakuan dari pusat masssa, dan frekuensi fundamental yang harus diestimasi berkaitan dengan rotasi struktur.

4. Kesimpulan

Dari hasil studi parametrik terhadap bangunan tidak simetris dengan menggunakan variasi pusat kekakuan (CR) terhadap pusat massa (CM) dan variasi faktor modifikasi respon gempa (R) akibat eksitasi gempa dua arah dengan karakteristik gempa *pulse* dan tanpa *pulse* yang dianalisis menggunakan program Ruamoko 3D, maka dapat diambil beberapa kesimpulan sebagai berikut:

- Simpangan struktur pada kondisi inelastis (Δ_i) selalu lebih besar dibandingkan simpangan struktur pada kondisi elastis (Δ_e). Rasio simpangan inelastis dengan elastis (Δ_i/Δ_e) mencapai 2,678 dengan peningkatan rata-rata 5% sampai dengan 8% untuk setiap kenaikan faktor modifikasi respon gempa (R). Berikut adalah respon bangunan ketika pusat kekakuan (CR) yang tidak berimpit dengan titik pusat massa (CM):
 - a. Simpangan di sisi fleksibel selalu lebih besar dibandingkan dengan simpangan di sisi kaku, akibatnya struktur akan mengalami efek torsi. Peningkatan simpangan di sisi kaku bisa

- mencapai 10% sampai dengan 20% dari simpangan di pusat massa, dan simpangan di sisi fleksibel mencapai 50% sampai dengan 100% dari simpangan di pusat massa.
- b. Respon torsi lebih dominan terjadi di arah-x bangunan karena jarak pusat eksentrisitas kekakuan yang lebih besar antara sisi kaku dan sisi fleksibel. Namun demikian, simpangan yang lebih besar terjadi pada arah-y bangunan karena kekakuan yang relatif lebih kecil dibandingkan pada arah-x.
- 2. Daktilitas struktur sangat mempengaruhi besarnya simpangan struktur. Pada penelitian ini, peningkatan faktor-R pada struktur dengan eksentrisitas pusat kekauan (e_r) berbeda tidak menunjukkan perubahan *trend* simpangan di sisi kaku dan sisi fleksibel yang signifikan. Namun simpangan yang lebih besar terjadi seiring bertambah besarnya eksentrisitas pusat kekakuan (e_r) dan nilai faktor modifikasi respon gempa (R). Untuk itu struktur dengan eksentrisitas pusat kekauan (e_r) dan faktor-R yang besar harus mendapat perhatian yang serius.
- 3. Karakteristik getaran gempa akan menentukan perilaku dan respon torsi pada bangunan tidak simetris. Respon simpangan struktur tidak simetris akibat getaran gempa pulse menunjukkan hasil yang lebih besar dibandingkan dengan respon simpangan akibat getaran gempa tanpa pulse, perbedaannya berkisar antara 5% sampai dengan 10%.

5. Daftar Kepustakaan

Anagnostopoulos, S. A. dkk. (2010). An Answer to an Important Controversy and The Need for Caution When Using Simple Models to Predict Inelastic Earthquake Response of Buildings With Torsion. *Earthquake Engineering Structure Dyn 39: 521-540*.

Anonim. (2005). International Code Council, Inc. Illinois: Building Officials and Code Administrators Intel 12 tional, Inc.

Anonim. (2012). Tata Cara Perencanaan Ketahanan Gempa untuk Struktur Bangunan Gedung dan Non Gedung. Jakarta: Badan Standarisasi Nasional.

Beyer, K., & Bommer, J. J. (2007). Selection and Scaling of Real Accelerograms for Bi-Directional Loading: A Review of Current Practice and Code Provisions. *Journal of Earthquake Engine 11*, 13-45.

Carr, A.J. (2008). Half AUMOKO-Inelastic Dynamic Analysis Program. Departement of Civil Engineering, University of Canterbury, Chirstchurc, New Zealand.

Chopra, A.K. (2002). *Dynamics of Structures*: Theory and Applications to Earthquake Engineering, 2nd ed., Prentice Hall, Upper Saddle River, N.J., 844pp.

De Stefano, M., & Pintucchi, B. (2008). A Review Of Research On Seismic Behaviour Of Irregular Building Structures Since 2002. *Bull Earthquake Eng* 6, 285-308.

Faisal, A. (2004). Torsi Aktual Pada SRPM Simetris. Seminar Nasional HAKI Komda Sumut 2014. Medan: Indonesia.

FEMA 451B. (2007). NEHRP Recomenden Provision for New Building and Other Structure: Training and Instructional Materials.

Gavin, H. P., (2014). *Vibration of Single Degree of Freedom Systems*. CEE Structural Dynamics.

Department of Civil Engineering. Duke University.

Haselton, C. B., Liel, A. B., Lange, S. T., & Deierlein, G. G. (2008). Beam-Column Element Model
 Calibrated for Predicting Flexural Response Leading to Global Collapse of RC Frame
 Buildings. Berkeley: Pacific Earthquake Engineering Research Center.

Katsanos, E. I., Sextos, A. G., & Mar 17s, G. D. (2010). Selection of earthquake ground motion records state-of-the-art review. *Soil Dynamics and Earthquake Engineering 30*, 157–169.

Kunnath SK, Erduran E, Chai YH, Yashinsky M. Effect of near fault vertical ground motions on seismic responses of highway overcrossings. *J Bridge Engineering ASCE* 2008; 13(3):282-90.

Lucchini, A. et al. (2009). Seismic Behavior of Single-Story Asymmetric-Plan Buildings Under Uniaxial Excitation. *Earthquake Engineering Structure Dyn 38*, 1053-1070.

Marusic, D., Fajfar, P. (2005). On The Inelastic Seismic Response of Asymmetric Buildings Under Biaxial Excitation. *Earthquake Engineering Structure Dyn* 34, 943-963.

Paulay, T. (1998). Torsional Mechanisms in Ductile Building Systems. Earthquake Engineering Structue Dyn 27, 1101-1121.

Pawirodikromo, W. (2012). Seismologi Teknik & Rekayasa Kegempaan. Yogyakarta: Pustaka Pelajar.

Medan, 26-27 November 2015, pp. iv, 146

13

- Pacific Earthquake Engineering Research (2008). PEER NGA Database, available at http://peer.berkeley.edu/ngd/.
- Roy, R., Chackroborty, S. (2013). Seismic Demand of Plan-Asymmetric Structures: A Revisit.
- Earthquake Engineering and Engineering Vibration 12, 99-117.
- Sommer, A., Bachmann, H. (2005). Seismic Behavior of Asymmetric RC Wall Buildings: Principles and New Deformation-Based Design Method. *Earthquake Engineering Structure Dyn* 34, 101-124.
- Somerville, P. (2003). Magnitude Scaling of The Forward Rupture Directivity Pulse in Near-Fault Ground Motions. URS Group Inc. Award Number: 01HQGR0048.
- Somerville, P. (2002). Characterizing Near Fault Ground Motion For The Design And Evaluation Of Bridges. *Third National Seismic Conference & Workshop on Bridges & Highways* Portland, Oregon, April 29 May 1, 2002. Vol. CA 91101.
- Stathopoulos, K. G., Anagnostopoulos, S. A. (2004). Earthquake Induced Inekastic Torsion In
- Asymmetric Multistory Buildings. World Conference on Earthquake Engineering 13, 558.
- Stathopoulos, K. G., Anagnostopoulos, S. A. (2005). Inelastic Torsion of Multistorey Buildings Under Earthquake Excitations 2 Farthquake Engineering Structure Dyn 34: 1449-1465.
- Tso, W.K dan Myslimaj, B. (2005). A Design-Oriented Approach to Strength Distribution in Single-Story Asymmetric Systems with Elements Having Strength-Dependent Stiffness. Earthquake Engineering Research Institute. Vol. 21, 197–212.

Syaifullah -Ade Faisal - 2015 - Seminar HASTAG VI

ORIGIN	IALITY REPORT			
_	3% ARITY INDEX	% INTERNET SOURCES	% PUBLICATIONS	13% STUDENT PAPERS
PRIMAF	RY SOURCES			
1	Submitte Student Paper	d to University o	of Sheffield	2%
2	Submitte Student Paper		eknologi MARA	2%
3	Submitte Student Paper	d to Chulalongk	orn University	1%
4	Submitte Student Paper	d to University (College London	1%
5	Submitte Student Paper	d to University o	of East London	1%
6	Submitte Student Paper	d to University o	of Melbourne	1%
7	Submitte Student Paper	d to University o	of Bath	1%
8	Submitte Student Paper		of New South W	ales 1%
9	Submitte Student Paper	d to University o	of Auckland	1%

	Student Paper	- 70
11	Submitted to University of Seoul Student Paper	1%
12	Submitted to Swinburne University of Technology Student Paper	<1%
13	Submitted to University of Strathclyde Student Paper	<1%
14	Submitted to Gaziantep Üniversitesi Student Paper	<1%
15	Submitted to Flinders University Student Paper	<1%
16	Submitted to Hellenic Open University Student Paper	<1%
17	Submitted to Pamukkale Üniversitesi Student Paper	<1%

Exclude quotes Off
Exclude bibliography On

Exclude matches

Off