Analysis of Linear Regression Model with Backward Method For Application of Good Corporate Governance Principles at PT. Asuransi Jasa Indonesia Medan Branch Office

Inggrid Nathalia ${ }^{1 *}$, Aghni Syahmarani ${ }^{2}$
${ }^{1}$ Student of Mathematics, Universitas Sumatera Utara, Indonesia
${ }^{2}$ Lecturer In Mathematics, Universitas Sumatera Utara, Indonesia
*Corresponding Author. E-mail :inggridntahalia21 @gmail.com

Article Info	ABSTRACT
Article History Received : 09 Desember 2022 Accepted : 12 Januari 2023 Published : 28 Februari 2023	Risk is one of the problems in human life that can make people feel uncomfortable. Various kinds of business that humans will be done by humans to be able to anticipate risks, one of which is by way of insurance. The development of insurance in Indonesia is inseparable from the performance of employee and a Good Corporate Governance system, so that State-Owned Enterprises (BUMN) implement
Keywords: Risk, Good Corporate Governance, Backward Elimination Method.	Good Corporate Governance, such as at PT. Asuransi Jasa Indonesia Medan Branch Office. This research was conducted by giving questionnaires to the employees of PT. Asuransi Jasa Indonesia Medan Branch Office on April 1, 2022 at 12.30 WIB. In this study, there are two most influential factors, namely the independency factor and the fairness factor, so that the estimator equation model using the backward elimination method is $\hat{Y}=7,868+0,187 X_{4}+0,498 X_{5}$ where X_{4} is the independency factors and X_{5} is the fairness factor.There are two factors that most affect the implementation of Good Corporate Governance principles at PT. Jasa Indonesia Medan Branch Office, namely independence (X_{4}) and fairness (X_{5}). Based on Pearson's (Pearson product moment) correlation between the dependent variable and the independent variable, a fairly close relationship is the relationship between employee performance to fairness and the value of 0.612 . The point is that in this study, the company quite guarantees that every interested party will get almost the same treatment between one employee and the other.

To cite this article:

INTRODUCTION

Man always tries to predict what will happen at every step of his life. Man cannot afford to know clearly what will happen in the future. A definite occurrence is when humans have already experienced it. In these events, humans can experience some risks that no one can predict. Risks can make humans feel uncomfortable. In the event of a risk, it will cause harm to humans. Humans will do their utmost to anticipate possible risks by avoiding them and redirecting them to other parties.

Usually humans will divert that risk through insurance. According to (M. Nur Rianto ,2012:212) insurance is a protection mechanism for the responsible if they experience a future risk where the responsible will pay premiums to get compensation from the debtor. Therefore, insurance is essential in human life and can develop significantly to support the national development process. The development of insurance in Indonesia is inseparable from employee performance and good corporate governance system. This relationship resulted in companies, especially State-Owned Enterprises (BUMN) implementing Good Corporate Governance.According to (Dhian Indah Astanti ,2015) Good Corporate Governance is a principle that leads and controls companies to achieve equality between power and
corporate authority in giving stakeholders responsibility both special and general. Yuspitasari, Hamdani, and Hakiem (2018) stated that GoodCorporate Governance is definitively a system that manages and controlscompany to create added value for allstakeholders.

Good corporate governance can provide a framework of reference that allows effective supervision, so that chechs and balances can be created in the company. Therefore, the implementation of good corporate governance needs to be supported by three closely related pillars, namely the state and community devices because there are two other roles played by external companies that must be obeyed and served so that the satisfaction of both parties can provide guarantees in the future. (Sifaul Qolbia, 2017)

Good Corporate Governance is one of the government activities that allows companies to grow and benefit over a long period of time. Good Corporate Governance is able to win both domestic and international business competitions, especially for companies that have been able to grow and open. Implementation needs to apply Good Corporate Governance principles so that it can be managed reliably, efficiently, and professionally without harming stakeholders. The most strategic aspects of supporting effective implementation of GCG are highly dependent on the quality, skill, credibility, and 4 integrity of the various parties that operate the corporate organization (Kaban, 2017)

In Indonesia, GCG is still weak. What happens to most companies in Indonesia, especially SOEs, is that they have not been able to carry out company management professionally. Even according to the results of the ACGA (Asian Corporate Governance Association) survey in 11 countries against foreign business operators in Asia in 2014 ranked Indonesia as the worst country in the corporate governance field. (Nurcahyani, 2013)In the field of statistics, one method that can be used to solve this problem is the backward elimination method. The backward elimination method is a good model-forming method. This method will use all known independent variables into the regression equation model first, then eliminate the variables that are claimed to be insignificant against the regression equation model.

RESEARCH METHOD

This research is a quantitative research and survey method used in this research. Collection of data sources in this study is to use primary data. The primary data used in this research is the questionnaire of the employees of PT. Asuransi Jasa Indonesia Medan Branch Office collected. This research was conducted at PT. Asuransi Jasa Indonesia Medan Branch Office on April 1, 2022 at 12.30 WIB consisting of employees of PT. Asuransi Jasa Indonesia Medan Branch Office as many as 38 people and contract employees of PT. Asuransi Jasa Indonesia Medan Branch Office as many as 8 people. Therefore, the total population at PT. Asuransi Jasa Indonesia Medan Branch Office as many as 46 people. There are several ways to collect data, namely first, collecting reference material from books obtained, some teaching materials in lectures, national and international journals, and other sources. Second, collecting data by giving questionnaires to employees of PT. Asuransi Jasa Indonesia Medan Branch Office based on the principles of Good Corporate Governance.

RESULTS AND DISCUSSION

This research was conducted at PT. Asuransi Jasa Indonesia Medan Branch Office on April 1, 2022 at 12.30 WIB by giving questionnaires to 46 company employees.

Linear Regression Model with Matrix Approach

The following can be seen the value of the regression coefficient (β) as follows:
Tabel 1. Multiple Regression Coefficient

Coefficients ${ }^{\text {a }}$

Model	Unstandardized Coefficients		Standardized Coefficients Beta	t		Collinearity Statistics	
	B	Std. Error				Tolerance	VIF
1 (Constant)	8.056	1.948		4.136	. 000		
Transparency (X1)	. 069	. 117	. 117	. 597	. 554	. 376	2.657
Accountability (X2)	-. 078	. 128	-. 122	-. 608	. 547	. 363	2.754
Responsibility (X3)	-. 018	. 176	-. 016	-. 101	. 920	. 549	1.822
Independency (X4)	. 200	. 121	. 243	1.649	. 107	. 671	1.490
Fairness (X5)	. 501	. 197	. 496	2.541	. 015	. 382	2.620

a. Dependent Variable: Kinerja Karyawan (Y)

So, the value of the regression coefficient is

$$
\beta=\left[\begin{array}{c}
8,056 \\
0,069 \\
-0,078 \\
-0,018 \\
0,200 \\
0,501
\end{array}\right]
$$

Where

$$
\beta_{0}=8,056 ; \quad \beta_{1}=0,069 ; \quad \beta_{2}=-0,078 ; \beta_{3}=-0,018 ; \quad \beta_{4}=0,200 ; \quad \beta_{5}=0,501 .
$$

Multiple Regression Equation Model between Y and $X_{1}, X_{2}, X_{3}, X_{4}, X_{5}$

The stages are as follows:

1. Multiple Regression Coefficients

Table 2. Multiple Regression Equation Model between Y and $X_{1}, X_{2}, X_{3}, X_{4}, X_{5}$

Coefficients ${ }^{\text {a }}$

Transparency (X1)	.069	.117	.117	.597	.554	.376
2.657						
Accountability (X2)	-.078	.128	-.122	-.608	.547	.363
2.754						
Responsibility (X3)	-.018	.176	-.016	-.101	.920	.549
Independency (X4)	.200	.121	.243	1.649	.107	.671

a. Dependent Variable: Kinerja Karyawan (Y)

From Tabel 2 it can be obtained the values of the multiple regression coefficients are as follows:

$$
\beta_{0}=8,056 ; \quad \beta_{1}=0,069 ; \quad \beta_{2}=-0,078 ; \quad \beta_{3}=-0,018 ; \quad \beta_{4}=0,200 ; \quad \beta_{5}=0,501 .
$$

So that the multiple linear regression equation model that is formed is
$\hat{Y}=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\beta_{3} X_{3}+\beta_{4} X_{4}+\beta_{5} X_{5}$
$\hat{Y}=8,056+0,069 X_{1}-0,078 X_{2}-0,018 X_{3}+0,200 X_{4}+0,501 X_{5}$
2. Testing the Significance of Multiple Regression

Table 3. ANOVA ${ }^{a}$ between Y and $X_{1}, X_{2}, X_{3}, X_{4}, X_{5}$
ANOVA ${ }^{a}$

Model	Sum of Squares	Df	Mean Square	F	Sig.	
1 Regression	62.874	5	12.575	5.779	. $000{ }^{\text {b }}$	
Residual	87.039	40	2.176			
Total	149.913	45				

a. Dependent Variable: Kinerja Karyawan (Y)
b. Predictors: (Constant), Fairness (X5), Independency (X4),

Responsibility (X3), Transparency (X1), Accountability (X2)
Table 3 it can be seen that the $F_{\text {count }}=5,779$ with a significant level $(\alpha)=0,05$, while $F_{\text {table }}$ value with a significant level $(\alpha)=0,05$ is $F_{(k-1 ; n-k)}=F_{(6-1 ; 46-6)}=F_{(5 ; 40)}=2,45$. Therefore $F_{\text {hitung }}>F_{\text {tabel }}$, it can be concluded that regeneration means.
3. Testing Pearson Correlation and ANOVA

Table 4. Testing Pearson correlation between Y and $X_{1}, X_{2}, X_{3}, X_{4}, X_{5}$
Correlations

		Kinerja Karyaw an (Y)	Transparen cy (X1)	Accountabil ity (X2)	Responsibil ity (X3)	Independen cy (X4)	Fairne ss (X5)
Kinerja Karyawan (Y)	Pearson						
	Correlati on	1	.467**	. 416	. 380	.487**	.612***
	Sig. (2tailed)		. 001	. 004	. 009	. 001	. 000
	N	46	46	46	46	46	46
Transparen cy (X1)	Pearson						
	Correlati on	.467**	1	.737**	.569**	.403**	.708**
	Sig. (2tailed)	. 001		. 000	. 000	. 005	. 000
	N	46	46	46	46	46	46
Accountabil ity (X2)	Pearson						
	Correlati on	. $416{ }^{* *}$. $737^{* *}$	1	.608**	. 470	. $700{ }^{* *}$
	Sig. (2tailed)	. 004	. 000		. 000	. 001	. 000
	N	46	46	46	46	46	46
Responsibil ity (X3)	Pearson						
	Correlati on	. $380{ }^{* *}$.569**	. $608{ }^{* *}$	1	.473**	. $582{ }^{* *}$
	Sig. (2tailed)	. 009	. 000	. 000		. 001	. 000
	N	46	46	46	46	46	46
Independen cy (X4)	Pearson						
	Correlati on	.487**	.403**	. $470{ }^{* *}$. $473{ }^{* *}$	1	. $529{ }^{*}$
	Sig. (2tailed)	. 001	. 005	. 001	. 001		. 000
	N	46	46	46	46	46	46
Fairness(X5)	Pearson						
	Correlati on	. 612	. 708	. 700	. 582	. 529	1
	Sig. (2tailed)	. 000	. 000	. 000	. 000	. 000	
	N	46	46	46	46	46	46

**. Correlation is significant at the 0.01 level (2-tailed).
From Tabel 4 it can be seen that the value of the Pearson correlation coefficient is as follows:
a. The value of the Pearson correlation coefficient between Y and X_{1} is 0,467 , which means that the level of relationship between variabel Y and X_{1} is moderate.
b. The value of the Pearson correlation coefficient between Y and X_{2} is 0,416 , which means that the level of relationship between variabel Y and X_{2} is moderate.
c. The value of the Pearson correlation coefficient between Y and X_{3} is 0,380 , which means that the level of relationship between variabel Y and X_{3} is low.
d.The value of the Pearson correlation coefficient between Y and X_{4} is 0,487 , which means that the level of relationship between variabel Y and X_{4} is moderate.
e. The value of the Pearson correlation coefficient between Y and X_{5} is 0,612 , which means that the level of relationship between variabel Y and X_{5} is strong.

Table 5. ANOVA between Y and $X_{1}, X_{2}, X_{3}, X_{4}, X_{5}$
ANOVA

		Sum of Squares	Df $\begin{gathered}\text { Mean } \\ \text { Square }\end{gathered}$		F	Sig.
Transparency (X1)	Between Groups	388.678	38	10.228	1.923	. 083
	Within Groups	37.235	7	5.319		
	Total	425.913	45			
Accountability (X2)	Between Groups	330.398	38	8.695	1.868	. 104
	Within Groups	32.580	7	4.654		
	Total	362.978	45			
Responsibility (X3)	Between Groups	117.267	38	3.086	2.150	. 072
	Within Groups	10.059	7	1.437		
	Total	127.326	45			
Independency (X4)	Between Groups	208.867	38	5.497	3.540	. 015
	Within Groups	10.872	7	1.553		
	Total	219.739	45			
Fairness (X5)	Between	139.362	38	3.667	3.631	. 005
	Groups					
	Within	7.073	7	1.010		
	Groups Total	146.435	45			

From Table 5 it can be seen that the smallest partial $F_{\text {partial }}$ with level $(\alpha)=0,05$ is 1,868 (variable X_{2}), while the $F_{\text {table }}$ value with level $(\alpha)=0,05$ is $F_{(k-1 ; n-k)}=F_{(6-1 ; 46-6)}=F_{(5 ; 40)}=2,45$. Therefore the smallest partial $F_{\text {partial }}<F_{\text {table }}$ then the variable X_{2} comes out of the regression equation model.

Multiple Regression Equation Model between Y and $X_{1}, X_{3}, X_{\mathbf{4}}, X_{5}$

The stages are as follows:

1. Multiple Regression Coefficients

Table 6. Multiple Regression Equation Model between Y and $X_{1}, X_{3}, X_{4}, X_{5}$

Coefficients ${ }^{\text {a }}$

Model							
	UnstandardizedStandardized Coefficients Coefficients			t	Collinearity Statistics		
	B	Std. Error	Beta		Sig.	eranc e	VIF
1 (Constant)	$\begin{array}{r} 8.07 \\ 9 \end{array}$	1.932		4.18 1	. 00		
Transparency (X1)	. 039	. 104	. 066	. 374	$\begin{array}{r}. \\ \hline 1\end{array}$. 462	2.16 4
Responsibility (X3)	. 042	. 171	-. 039	. 246	80 7	. 578	1.73 0
Independency (X4)	. 192	. 120	. 233	1.60 5	.11 6	. 679	1.47 3
Fairness (X5)	. 471	. 189	. 465	2.48 7	.01 7	. 409	2.44 6

From a. Dependent Variable: Kinerja Karyawan (Y)
it can
Tabel 6
obtained the values of the multiple regression coefficients are as follows:

$$
\beta_{0}=8,079 ; \quad \beta_{1}=0,039 ; \quad \beta_{3}=-0,042 ; \quad \beta_{4}=0,192 ; \quad \beta_{5}=0,471
$$

So that the multiple linear regression equation model that is formed is

$$
\begin{aligned}
& \hat{Y}=\beta_{0}+\beta_{1} X_{1}+\beta_{3} X_{3}+\beta_{4} X_{4}+\beta_{5} X_{5} \\
& \hat{Y}=8,079+0,039 X_{1}-0,042 X_{3}+0,192 X_{4}+0,471 X_{5}
\end{aligned}
$$

2. Testing the Significance of Multiple Regression

Table 7. ANOVA ${ }^{\text {a }}$ between Y and $X_{1}, X_{3}, X_{4}, X_{5}$

ANOV A ${ }^{a}$

Model		Sum of Squares	Df	Mean Square	F	Sig.
1	Regression	62.069	4	15.517	7.24 3	. $000{ }^{\text {b }}$
	Residual	87.844	41	2.143		
	Total	149.913	45			

a. Dependent Variable: Kinerja Karyawan (Y)
b. Predictors: (Constant), Fairness (X5), Independency (X4),

Responsibility (X3), Transparency (X1)
From Table 7 it can be seen that the $F_{\text {count }}=7,243$ with a significant level $(\alpha)=0,05$, while $F_{\text {table }}$ value with a significant level $(\alpha)=0,05$ is $F_{(k-1 ; n-k)}=F_{(5-1 ; 46-5)}=F_{(4 ; 41)}=2,60$. Therefore $F_{\text {hitung }}>$ $F_{\text {tabel }}$, it can be concluded that regeneration means.
3. Testing Pearson Correlation and ANOVA

Table 8. Testing Pearson correlation between Y and $X_{1}, X_{3}, X_{4}, X_{5}$
Correlations

		Kinerja Karyaw an (Y)	Transp arency (X1)	Responsibil ity (X3)	Independ ency (X4)	Fairne ss (X5)
Kinerja Karyawan (Y)	Pearson Correlati on Sig. (2tailed)	1	$.467^{* *}$.001	$.380 * *$	$.487^{* *}$.001	$.612^{* *}$.000
Transparen cy (X1)	N	46	46	46	46	46
	Pearson Correlati on	. 467 **	1	. 569 **	. 403 **	. $708^{* *}$
	Sig. (2tailed)	. 001		. 000	. 005	. 000
Responsibil ity (X3)	N	46	46	46	46	46
	Pearson Correlati on Sig. (2tailed)	$.380 * *$	$.569 * *$	1	$.473 * *$	$.582 * *$
Independen cy (X4)	N	46	46	46	46	46
	Pearson					
	Correlati	. $487^{* *}$. $403 * *$. 473 **	1	.529**
	on					
	Sig. (2tailed)	. 001	. 005	. 001		. 000
Fairness(X5)	N	46	46	46	46	46
	Correlati on	. 612	. 708	. 582	. 529	1
	Sig. (2tailed)	. 000	. 000	. 000	. 000	
	N	46	46	46	46	46

**. Correlation is significant at the 0.01 level (2-tailed).
From Tabel 8 it can be seen that the value of the Pearson correlation coefficient is as follows:
a. The value of the Pearson correlation coefficient between Y and X_{1} is 0,467 , which means that the level of relationship between variabel Y and X_{1} is moderate.
b. The value of the Pearson correlation coefficient between Y and X_{3} is 0,380 , which means that the level of relationship between variabel Y and X_{3} is low.
c. The value of the Pearson correlation coefficient between Y and X_{4} is 0,487 , which means that the level of relationship between variabel Y and X_{4} is moderate.
d. The value of the Pearson correlation coefficient between Y and X_{5} is 0,612 , which means that the level of relationship between variabel Y and X_{5} is strong.

Table 9. ANOVA between Y and $X_{1}, X_{3}, X_{4}, X_{5}$
ANOVA

From Table 9 it can be seen that the smallest partial $F_{\text {partial }}$ with level $(\alpha)=0,05$ is 1,923 (variable X_{1}), while the $F_{\text {table }}$ value with level $(\alpha)=0,05$ is $F_{(k-1 ; n-k)}=F_{(5-1 ; 46-5)}=F_{(4 ; 41)}=2,60$. Therefore the smallest partial $F_{\text {partial }}<F_{\text {table }}$ then the variable X_{1} comes out of the regression equation model.

Multiple Regression Equation Model between Y and X_{3}, X_{4}, X_{5}

The stages are as follows:

1. Multiple Regression Coefficients

Table 10.Multiple Regression Equation Model between Y and X_{3}, X_{4}, X_{5}
Coefficients ${ }^{\text {a }}$
Standardiz
ed
Unstandardized Coefficient
Coefficients s

Model					Toleran		
	B	Std. Error	Beta	t	Sig.	ce	VIF
1 (Constant)	7.984	1.896		4.212	. 000		
Responsibility (X3)	-. 025	. 163	-. 023	-. 153	. 879	. 623	1.605

Independency	.192	.119	.232	1.615	.114	.679	1.472
(X4)	.159	.503	3.231	.002	.578	1.730	
Fairness (X5)	.509	.157					

a. Dependent Variable: Kinerja Karyawan (Y)

From Tabel 10 it can be obtained the values of the multiple regression coefficients are as follows:

$$
\beta_{0}=7,984 ; \quad \beta_{3}=-0,025 ; \quad \beta_{4}=0,192 ; \quad \beta_{5}=0,509
$$

So that the multiple linear regression equation model that is formed is

$$
\begin{aligned}
& \hat{Y}=\beta_{0}++\beta_{3} X_{3}+\beta_{4} X_{4}+\beta_{5} X_{5} \\
& \hat{Y}=7,984-0,025 X_{3}+0,192 X_{4}+0,509 X_{5}
\end{aligned}
$$

2. Testing the Significance of Multiple Regression

Table 11. ANOVA ${ }^{\text {a }}$ between Y and X_{3}, X_{4}, X_{5}
ANOVA ${ }^{\text {a }}$

Model	Sum of Squares	Df	Mean Square	F	Sig.
1	Regression	61.770	3	20.590	9.811
Residual	88.143	42	2.000^{b}		
Total	149.913	45			

a. Dependent Variable: Kinerja Karyawan (Y)
b. Predictors: (Constant), Fairness (X5), Independency (X4), Responsibility (X3)

From Table 11 it can be seen that the $F_{\text {count }}=9,811$ with a significant level $(\alpha)=0,05$, while $F_{\text {table }}$ value with a significant level $(\alpha)=0,05$ is $F_{(k-1 ; n-k)}=F_{(4-1 ; 46-4)}=F_{(3 ; 42)}=2,83$. Therefore $F_{\text {hitung }}>F_{\text {tabel }}$, it can be concluded that regeneration means.
3. Testing Pearson Correlation and ANOVA

Table 12. Testing Pearson correlation between Y and X_{3}, X_{4}, X_{5}
Correlations

		Kinerja Karyawan (Y)	Responsibility (X3)	Independency (X4)	Fairness (X5)
Kinerja Karyawan (Y)	Pearson	1	. $380{ }^{* *}$. 487 *	. $612^{* *}$
	Correlation				
	Sig. (2-tailed)		. 009	. 001	. 000
	N	46	46	46	46
Responsibility(X3)	Pearson	. 380	1	. 473 *	. $582 \times$
	Correlation	. 380			
	Sig. (2-tailed)	. 009		. 001	. 000
	N	46	46	46	46
Independency(X4)	Pearson Correlation	.487**	. $473{ }^{* *}$	1	. $529{ }^{* *}$
	Sig. (2-tailed)	. 001	. 001		. 000
	N	46	46	46	46
Fairness (X5)	Pearson Correlation	.612******	. $582 \times$	$529 *$	1
	Sig. (2-tailed) N	. 000	. 000	. 000	
		46	46	46	46

**. Correlation is significant at the 0.01 level (2 -tailed).
From Tabel 12 it can be seen that the value of the Pearson correlation coefficient is as follows:
a. The value of the Pearson correlation coefficient between Y and X_{3} is 0,380 , which means that the level of relationship between variabel Y and X_{3} is low.
b. The value of the Pearson correlation coefficient between Y and X_{4} is 0,487 , which means that the level of relationship between variabel Y and X_{4} is moderate.
c. The value of the Pearson correlation coefficient between Y and X_{5} is 0,612 , which means that the level of relationship between variabel Y and X_{5} is strong.

Table 13. ANOVA between Y and X_{3}, X_{4}, X_{5}
ANOVA

		ANOVA			
		Sum of Squares df	Mean Square	F	Sig.
Responsibility (X3)	Between Groups	117.26738	3.086	2.150	. 072
	Within Groups	10.0597	1.437		
	Total	127.32645			
	Between Groups	208.86738	5.497	3.540	. 015
Independency (X4)	Within Groups	10.8727	1.553		
	Total	219.73945			
Fairness (X5)		139.36238	3.667	3.631	. 005
	Between Groups				
	Within Groups	7.0737	1.010		
	Total	146.43545			

Table 13 it can be seen that the smallest partial $F_{\text {partial }}$ with level $(\alpha)=0,05$ is 2,150 (variable X_{3}), while the $F_{\text {table }}$ value with level $(\alpha)=0,05$ is $F_{(k-1 ; n-k)}=F_{(4-1 ; 46-4)}=F_{(3 ; 42)}=2,83$. Therefore the smallest partial $F_{\text {partial }}<F_{\text {table }}$ then the variable X_{3} comes out of the regression equation model.

Multiple Regression Equation Model between Y and X_{4}, X_{5}

The stages are as follows:

1. Multiple Regression Coefficients

Table 14. Multiple Regression Equation Model between Y and X_{4}, X_{5}
Coefficients ${ }^{\text {a }}$

a. Dependent Variable: Kinerja Karyawan (Y)

From Tabel 14 it can be obtained the values of the multiple regression coefficients are as follows:

$$
\beta_{0}=7,868 ; \quad \beta_{4}=0,187 ; \quad \beta_{5}=0,498
$$

So that the multiple linear regression equation model that is formed is

$$
\begin{aligned}
& \hat{Y}=\beta_{0}+\beta_{4} X_{4}+\beta_{5} X_{5} \\
& \hat{Y}=7,868+0,187 X_{4}+0,498 X_{5}
\end{aligned}
$$

2. Testing the Significance of Multiple Regression

Table 15. ANOVA ${ }^{\text {a }}$ between Y and X_{4}, X_{5}

ANOVA $^{\text {a }}$					
Model	Sum of Squares	df	Mean Square	F	Sig.
Regression	61.721	2	30.861	15.047	$.000^{\text {b }}$
Residual	88.192	43	2.051		
Total	149.913	45			

a. Dependent Variable: Kinerja Karyawan (Y)
b. Predictors: (Constant), Fairness (X5), Independency (X4)

From Table 15 it can be seen that the $F_{\text {count }}=15,047$ with a significant level $(\alpha)=0,05$, while $F_{\text {table }}$ value with a significant level $(\alpha)=0,05$ is $F_{(k-1 ; n-k)}=F_{(3-1 ; 46-3)}=F_{(2 ; 43)}=3,21$. Therefore $F_{\text {hitung }}>F_{\text {tabel }}$, it can be concluded that regeneration means.
3. Testing Pearson Correlation and ANOVA

Table 16. Testing Pearson correlation between Y and X_{4}, X_{5}
Correlations

		Kinerja Karyawan (Y)	Independe ncy (X4)	Fairness (X5)
Kine	Pearson Correlation	1	. 487 "	.612"
rja	Sig. (2-tailed)		. 001	. 000
Kary	N			
awa		46	46	46
n (Y)				
Inde	Pearson Correlation	.487**	1	.529**
pend	Sig. (2-tailed)	. 001		. 000
ency	N	46	46	46
Fairn	Pearson Correlation	. $612^{* *}$.529**	1
ess	Sig. (2-tailed)	. 000	. 000	
(X5)	N	46	46	46

From Tabel 16
**. Correlation is significant at the 0.01 level (2-tailed).
it can be seen that the value of the Pearson correlation coefficient is as follows:
a. The value of the Pearson correlation coefficient between Y and X_{4} is 0,487 , which means that the level of relationship between variabel Y and X_{4} is moderate.
b. The value of the Pearson correlation coefficient between Y and X_{5} is 0,612 , which means that the level of relationship between variabel Y and X_{5} is strong.

Table 17. ANOVA between Y and X_{4}, X_{5}
ANOVA

		Sum of Squares	df	Mean Square	F	Sig.
Independency (X4)	Between Groups	208.867	38	5.497	3.540	.015
	Within Groups	10.872	7	1.553		
	Total	219.739	45			
Fairness (X5)	Between Groups	139.362	38	3.667	3.631	.005
	Within Groups	7.073	7	1.010		
	Total	146.435	45			

From Table 17 it can be seen that the smallest partial $F_{\text {partial }}$ with level $(\alpha)=0,05$ is 3,540 (variable X_{4}), while the $F_{\text {table }}$ value with level $(\alpha)=0,05$ is $F_{(k-1 ; n-k)}=F_{(3-1 ; 46-3)}=F_{(2 ; 43)}=3,21$. Therefore the smallest partial $F_{\text {partial }}>F_{\text {table }}$, the variable X_{4} does not come out of the regression equation model.

Estimator Formation

The stages are as follows:

1. Estimator Equation in Backward Elimination Method

Of the five independent variables, there are only two variables included in the estimator equation model, namely variables X_{4} and X_{5}. The estimator equation model of the variables X_{4} and X_{5} is as follows:

$$
\begin{gathered}
\hat{Y}=\beta_{0}+\beta_{4} X_{4}+\beta_{5} X_{5} \\
\hat{Y}=7,868+0,187 X_{4}+0,498 X_{5}
\end{gathered}
$$

2. Coefficient of Determination

The value of the coefficient of determination formed from the backward elimination method is as follows:

Table 18. Coefficient of Determination

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	$.648^{\mathrm{a}}$.419	.347	1.475

a. Predictors: (Constant), Fairness (X5), Independency
(X4), Responsibility (X3), Transparency (X1),
Accountability (X2)
In Table 18 there is a large value of the coefficient of determination which is 0,419 or $41,9 \%$ and these results come from

$$
\begin{gathered}
R^{2}=(r)^{2} \times 100 \% \\
R^{2}=(0,648)^{2} \times 100 \% \\
R^{2}=0,419 \times 100 \% \\
R^{2}=41,9 \%
\end{gathered}
$$

3. Residu Analysis

The estimator equation formed from the backward elimination method can use tables to be able to analyze residues. The results of the residual analysis can be seen in Table 19.

Table 19. Correlation Coefficient of Rank Spearman and Residues

No.	\boldsymbol{Y}	$\widehat{\boldsymbol{Y}}$	$\boldsymbol{e}_{\boldsymbol{j}}$	Rank $\widehat{\boldsymbol{Y}}$	Rank \boldsymbol{e}	\boldsymbol{d}	$\boldsymbol{d}^{\mathbf{2}}$
$\mathbf{1}$	15	17,235	$-2,235$	19	41	-22	484
$\mathbf{2}$	16	17,235	$-1,235$	19	34	-15	225
$\mathbf{3}$	20	19,650	0,3499	3	18	-15	225
$\mathbf{4}$	18	19,430	$-1,430$	6	38	-32	1024
$\mathbf{5}$	18	18,660	$-0,657$	10	29	-19	361
$\mathbf{6}$	20	19,594	0,406	4	17	-13	169
$\mathbf{7}$	16	18,283	$-2,283$	12	43	-31	961
$\mathbf{8}$	18	15,441	2,560	39	3	36	1296
$\mathbf{9}$	14	16,265	$-2,265$	31	42	-11	121
$\mathbf{1 0}$	19	17,699	1,301	15	9	6	36
$\mathbf{1 1}$	19	20,112	$-1,112$	2	32	-30	900
$\mathbf{1 2}$	18	19,319	$-1,319$	7	37	-30	900
$\mathbf{1 3}$	17	17,291	$-0,291$	17	27	-10	100

14	17	19,164	-2,164	9	40	-31	961
15	17	19,506	-2,506	5	44	-39	1521
16	18	17,942	0,058	13	20	-7	49
17	18	17,489	0,511	16	16	0	0
18	17	16,750	0,250	28	19	9	81
19	16	17,112	-1,112	25	32	-7	49
20	20	19,252	0,748	8	13	-5	25
21	13	15,667	-2,667	38	45	-7	49
22	20	18,338	1,662	11	8	3	9
23	16	15,262	0,738	42	14	28	784
24	29	20,278	8,722	1	1	0	0
25	16	17,235	-1,235	19	34	-15	225
26	16	17,235	-1,235	19	34	-15	225
27	17	15,093	1,907	43	6	37	1369
28	18	17,004	0,996	26	11	15	225
29	17	17,941	-0,941	14	31	-17	289
30	17	15,270	1,730	41	7	34	1156
31	17	15,041	1,959	44	5	39	1521
32	18	16,806	1,194	27	10	17	289
33	18	17,155	0,8446	24	12	12	144
34	16	16,176	-0,176	32	23	9	81
35	16	15,394	0,606	40	15	25	625
36	14	14,667	-0,667	45	30	15	225
37	19	16,411	2,589	29	2	27	729
38	17	17,213	-0,213	23	24	-1	1
39	16	15,988	0,012	35	21	14	196
40	18	15,700	2,300	37	4	33	1089
41	13	16,012	-3,012	34	46	-12	144
42	14	15,724	-1,725	36	39	-3	9
43	17	17,249	-0,249	18	25	-7	49
44	16	16,276	-0,276	30	26	4	16

45	16	16,102	$-0,102$	33	22	11	121
46	14	14,335	$-0,336$	46	28	18	324
	Total	0			15.382		
Rata-Rata	0		334,39				

a. Assumption (i): the average residual equals zero

From Table 19 it can be seen that the average residual value of e_{j} is 0 , then the assumption statement (i) is fulfilled.
b. Assumption (ii): variance $\left(e_{j}\right)=$ variance $\left(e_{k}\right)=\sigma^{2}$

The proof of this assumption can be done with the Rank Spearman test.
a) Spearman Rank Test
$r_{s}=1-\frac{6 \sum d^{2}}{n\left(n^{2}-1\right)}$
$r_{s}=1-\frac{6 \times 15.382}{46\left[(46)^{2}-1\right]}$
$r_{s}=1-\frac{92.292}{46(2.116-1)}$
$r_{s}=1-\frac{92.292}{46 \times 2.115}$
$r_{s}=1-\frac{92.292}{97.290}$
$r_{s}=1-0,948$
$r_{s}=0,052$
b) Find the calculated value

$$
\begin{aligned}
& t_{\text {hitung }}=\frac{r_{s} \sqrt{n-2}}{\sqrt{1-r_{s}^{2}}} \\
& t_{\text {hitung }}=\frac{0,052 \times \sqrt{46-2}}{\sqrt{1-(0,052)^{2}}} \\
& t_{\text {hitung }}=\frac{0,052 \times \sqrt{44}}{\sqrt{1-0,002704}} \\
& t_{\text {hitung }}=\frac{0,052 \times 6,63324958071}{\sqrt{0,997296}} \\
& t_{\text {hitung }}=\frac{0,3449289782}{0,99864708481} \\
& t_{\text {hitung }}=0,345
\end{aligned}
$$

From the calculation above, it is known that $n=46$ with a significant level $(\alpha)=0,05$, the value $t_{\text {count }}$ of is 0,345 while the value of $t_{\text {table }}$ is $t_{\text {table }}=t_{(\alpha / 2 ; n-k)}=t_{(0,05 / 2 ; 46-6)}=t_{(0,025 ; 40)}=2,02108$. Therefore, $t_{\text {count }}<t_{\text {table }}$ the assumption statement (ii) is fulfilled.
c. Assumptions (iii): covariance $\left(e_{j}, e_{k}\right)=0 ; j \neq k$

Scatterplot

Figure 1. Heteroscedasticity Test

In Figure 1 the distribution of the points above and below or around zero does not form a particular pattern or flow, so it can be concluded that there is no heteroscedasticity. Thus, the assumptions are met and the regression model can be used to predict the variables that have the greatest influence on the application of the principles of Good Corporate Governance at PT. Asuransi Jasa Indonesia Medan Branch Office.

Conclusions

Based on the results and discussion, it can be concluded that from the five factors, namely transparency $\left(X_{1}\right)$, accountability $\left(X_{2}\right)$, responsibility $\left(X_{3}\right)$, independency $\left(X_{4}\right)$ and fairness $\left(X_{5}\right)$ there are two factors that most influence the application of the principles of Good Corporate Governance at PT. Asuransi Jasa Indonesia Medan Branch Office, namely independency $\left(X_{4}\right)$ and fairness $\left(X_{5}\right)$ with the regression equation model is $\hat{Y}=8,056+0,069 X_{1}-0,078 X_{2}-0,018 X_{3}+0,200 X_{4}+0,501 X_{5}$ and based on Pearson correlation (Pearson product momen), a fairly close relationship between the dependent variable and the independent variable is the relationship between employee performance and fairness with a value of 0,612.

REFERENCE

B. I. Sanny and R. K. Dewi.2020. "Pengaruh Net Interest Margin (NIM) terhadap Return On Asset (ROA) pada PT. Bank Pembangunan Daerah Jawa Barat dan Banten TBK Periode 2013-2017," Jurnal E-Bis (Ekonomi-Bisnis), vol. 4, no. 1, pp. 78-87.
C. Utama. 2009. "Dengan Pendekatan Matriks dalam Regresi," Jurnal Ilmiah Fakultas Ekonomi Universitas Katolik Parahyangan, vol. 13, no. 1, pp. 96-104.
Dhian Indah Astanti .2015. Good Corporate Governance Pada Perusahaan Asuransi. University Press : Semarang
J.Supranto. 2003. Pengantar Matrix. Jakarta : PT. Rineka Cipta

Kaban, A., Sihombing, M., \& Tarigan, U. 2017. Analisis Prinsip-Prinsip Good Corporate Governance pada Perusahaan Pembiayaan. Jurnal Administrasi Publik, Vol. 7 (1) Juni.
N. Samosir and dkk. 2014. "Analisa Metode Backward dan Metode Forward untuk Menentukan Persamaan Regresi Linier Berganda (Studi Kasus: Jumlah Kecelakaan Lalu Lintas di Kotamadya Medan)," Jurnal Saintia Matematika, vol. 2, no. 4, pp. 345-360.
Nurcahyani dkk, 2013. Penerapan Good Corporate Governance Dan Kepemilikan Institusional Terhadap Kinerja Keuangan
Ridwan. 2007. Skala Pengukuran Variabel-Variabel Penelitian. Bandung : Alfabeta
R.Rifa'i. 2016. Aljabar Matriks Dasar. Yogyakarta : Deepublish

Sifaul Qolbia, 2017. Penerapan Good Corporate Governance Pada Perusahaan Daerah Pasar Surya Surabaya, Vol 5.
S.Larasati dan A.Gilang.2016. "Pengaruh Motivasi Kerja Terhadap Kinerja Karyawan Wilayah Telkom Jabar Barat Utara, " Jurnal Manajemen dan Organisasi, 5(3) pp. 201-203.
S.Marwansyah dan A.N. Utami. 2017. "Analisis Hasil Investasi, Pendapatan Premi, dan Beban Klaim Terhadap Laba Perusahaan Perasuransian Di Indonesia, "Jurnal Akutansi, Ekonomi dan Manajemen Bisnis, 5(2) pp. 213-221.
Suyono.2018. Aneka Regresi Untuk Penelitian. Yogyakarta : Deepublish
T.A. Nurman.2014. "Matriks Diagonal Dalam Kajian Penyelesaian Sistem Persamaan Diferensial."Jurnal Teknosains, 8(3) pp. 374-392.
Yupitasari., I. Hamdani., dan H. H. Hakiem. (2018). Pengaruh Penerapan Prinsip-Prinsip Good Corporate Governance Terhadap Kinerja Pegawai (Studi Kasus Bank Syariah Mandiri Cabang Bogor). Malia (Terakreditasi), 9(2,) 224-243. Akreditasi No. 21/E/Kpt/2018.

