Analysis of Linear Regression Model with Backward Method For Application of Good Corporate Governance Principles at PT. Asuransi Jasa Indonesia Medan Branch Office

Inggrid Nathalia¹, Aghni Syahmarani²

¹ Student of Mathematics, Universitas Sumatera Utara, Indonesia
² Lecturer in Mathematics, Universitas Sumatera Utara, Indonesia

*Corresponding Author. E-mail: inggridntahalia21@gmail.com

ABSTRACT

Risk is one of the problems in human life that can make people feel uncomfortable. Various kinds of business that humans will be done by humans to be able to anticipate risks, one of which is by way of insurance. The development of insurance in Indonesia is inseparable from the performance of employees and a Good Corporate Governance system, so that State-Owned Enterprises (BUMN) implement Good Corporate Governance, such as at PT. Asuransi Jasa Indonesia Medan Branch Office. This research was conducted by giving questionnaires to the employees of PT. Asuransi Jasa Indonesia Medan Branch Office on April 1, 2022 at 12.30 WIB. In this study, there are two most influential factors, namely the independency factor and the fairness factor, so that the estimator equation model using the backward elimination method is

\[Y = 7.868 + 0.187X_4 + 0.498X_5 \]

where \(X_4 \) is the independency factors and \(X_5 \) is the fairness factor. There are two factors that most affect the implementation of Good Corporate Governance principles at PT. Jasa Indonesia Medan Branch Office, namely independence \((X_4) \) and fairness \((X_5) \). Based on Pearson’s (Pearson product moment) correlation between the dependent variable and the independent variable, a fairly close relationship is the relationship between employee performance to fairness and the value of 0.612. The point is that in this study, the company quite guarantees that every interested party will get almost the same treatment between one employee and the other.

Keywords: Risk, Good Corporate Governance, Backward Elimination Method.

INTRODUCTION

Man always tries to predict what will happen at every step of his life. Man cannot afford to know clearly what will happen in the future. A definite occurrence is when humans have already experienced it. In these events, humans can experience some risks that no one can predict. Risks can make humans feel uncomfortable. In the event of a risk, it will cause harm to humans. Humans will do their utmost to anticipate possible risks by avoiding them and redirecting them to other parties.

Usually humans will divert that risk through insurance. According to (M. Nur Rianto, 2012:212) insurance is a protection mechanism for the responsible if they experience a future risk where the responsible will pay premiums to get compensation from the debtor. Therefore, insurance is essential in human life and can develop significantly to support the national development process. The development of insurance in Indonesia is inseparable from employee performance and good corporate governance system. This relationship resulted in companies, especially State-Owned Enterprises (BUMN) implementing Good Corporate Governance. According to (Dhian Indah Astanti, 2015) Good Corporate Governance is a principle that leads and controls companies to achieve equality between power and
corporate authority in giving stakeholders responsibility both special and general. Yuspitasari, Hamdani, and Hakiem (2018) stated that Good Corporate Governance is definitively a system that manages and controls company to create added value for all stakeholders.

Good corporate governance can provide a framework of reference that allows effective supervision, so that checks and balances can be created in the company. Therefore, the implementation of good corporate governance needs to be supported by three closely related pillars, namely the state and community devices because there are two other roles played by external companies that must be obeyed and served so that the satisfaction of both parties can provide guarantees in the future. (Sifaul Qo’liba, 2017)

Good Corporate Governance is one of the government activities that allows companies to grow and benefit over a long period of time. Good Corporate Governance is able to win both domestic and international business competitions, especially for companies that have been able to grow and open. Implementation needs to apply Good Corporate Governance principles so that it can be managed reliably, efficiently, and professionally without harming stakeholders. The most strategic aspects of supporting effective implementation of GCG are highly dependent on the quality, skill, credibility, and integrity of the various parties that operate the corporate organization (Kaban, 2017)

In Indonesia, GCG is still weak. What happens to most companies in Indonesia, especially SOEs, is that they have not been able to carry out company management professionally. Even according to the results of the ACGA (Asian Corporate Governance Association) survey in 11 countries against foreign business operators in Asia in 2014 ranked Indonesia as the worst country in the corporate governance field. (Nurcahyani, 2013) In the field of statistics, one method that can be used to solve this problem is the backward elimination method. The backward elimination method is a good model-forming method. This method will use all known independent variables into the regression equation model first, then eliminate the variables that are claimed to be insignificant against the regression equation model.

RESEARCH METHOD

This research is a quantitative research and survey method used in this research. Collection of data sources in this study is to use primary data. The primary data used in this research is the questionnaire of the employees of PT. Asuransi Jasa Indonesia Medan Branch Office collected. This research was conducted at PT. Asuransi Jasa Indonesia Medan Branch Office on April 1, 2022 at 12.30 WIB consisting of employees of PT. Asuransi Jasa Indonesia Medan Branch Office as many as 38 people and contract employees of PT. Asuransi Jasa Indonesia Medan Branch Office as many as 8 people. Therefore, the total population at PT. Asuransi Jasa Indonesia Medan Branch Office as many as 46 people. There are several ways to collect data, namely first, collecting reference material from books obtained, some teaching materials in lectures, national and international journals, and other sources. Second, collecting data by giving questionnaires to employees of PT. Asuransi Jasa Indonesia Medan Branch Office based on the principles of Good Corporate Governance.

RESULTS AND DISCUSSION

This research was conducted at PT. Asuransi Jasa Indonesia Medan Branch Office on April 1, 2022 at 12.30 WIB by giving questionnaires to 46 company employees.

Linear Regression Model with Matrix Approach

The following can be seen the value of the regression coefficient (β) as follows:

| Tabel 1. Multiple Regression Coefficient |
|--|---
| β |

http://jurnal.umsu.ac.id/index.php/mitika/index

Email: jmea@umsu.ac.id
So, the value of the regression coefficient is

\[
\beta = \begin{bmatrix}
8.056 \\ 0.069 \\ -0.078 \\ -0.018 \\ 0.200 \\ 0.501
\end{bmatrix}
\]

Where

\[
\beta_0 = 8.056; \quad \beta_1 = 0.069; \quad \beta_2 = -0.078; \beta_3 = -0.018; \quad \beta_4 = 0.200; \quad \beta_5 = 0.501.
\]

Multiple Regression Equation Model between \(Y\) and \(X_1, X_2, X_3, X_4, X_5\)

The stages are as follows:

1. Multiple Regression Coefficients

Table 2. Multiple Regression Equation Model between \(Y\) and \(X_1, X_2, X_3, X_4, X_5\)

<table>
<thead>
<tr>
<th>Model</th>
<th>Unstandardized Coefficients</th>
<th>Standardized Coefficients</th>
<th>Collinearity Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>Std. Error</td>
<td>Beta</td>
</tr>
<tr>
<td>(Constant)</td>
<td>8.056</td>
<td>1.948</td>
<td></td>
</tr>
<tr>
<td>Transparency</td>
<td>0.069</td>
<td>0.117</td>
<td>0.117</td>
</tr>
<tr>
<td>Accountability</td>
<td>-0.078</td>
<td>0.128</td>
<td>-0.122</td>
</tr>
<tr>
<td>Responsibility</td>
<td>-0.018</td>
<td>0.176</td>
<td>-0.016</td>
</tr>
<tr>
<td>Independency</td>
<td>0.200</td>
<td>0.121</td>
<td>0.243</td>
</tr>
<tr>
<td>Fairness (X5)</td>
<td>0.501</td>
<td>0.197</td>
<td>0.496</td>
</tr>
</tbody>
</table>

a. Dependent Variable: Kinerja Karyawan (\(Y\))
From Table 2 it can be obtained the values of the multiple regression coefficients are as follows:

\[\beta_0 = 8.056; \quad \beta_1 = 0.069; \quad \beta_2 = -0.078; \quad \beta_3 = -0.018; \quad \beta_4 = 0.200; \quad \beta_5 = 0.501. \]

So that the multiple linear regression equation model that is formed is

\[Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_4 + \beta_5 X_5 \]

\[Y = 8.056 + 0.069 X_1 - 0.078 X_2 - 0.018 X_3 + 0.200 X_4 + 0.501 X_5 \]

2. Testing the Significance of Multiple Regression

Table 3. ANOVA\(^a\) between \(Y \) and \(X_1, X_2, X_3, X_4, X_5 \)

<table>
<thead>
<tr>
<th>Model</th>
<th>Sum of Squares</th>
<th>Df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Regression</td>
<td>62.874</td>
<td>5</td>
<td>12.575</td>
<td>5.779</td>
<td>.000(^b)</td>
</tr>
<tr>
<td>Residual</td>
<td>87.039</td>
<td>40</td>
<td>2.176</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>149.913</td>
<td>45</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^a\) Dependent Variable: Kinerja Karyawan (\(Y \))

\(^b\) Predictors: (Constant), Fairness (\(X_5 \)), Independency (\(X_4 \)), Responsibility (\(X_3 \)), Transparency (\(X_1 \)), Accountability (\(X_2 \))

Table 3 it can be seen that the \(F_{\text{count}} = 5.779 \) with a significant level \((\alpha) = 0.05\), while \(F_{\text{table}} \) value with a significant level \((\alpha) = 0.05\) is \(F_{(5-1; 46-6)} = F_{(4; 40)} = 2.45 \). Therefore \(F_{\text{hitung}} > F_{\text{table}} \), it can be concluded that regeneration means.

3. Testing Pearson Correlation and ANOVA

Table 4. Testing Pearson correlation between \(Y \) and \(X_1, X_2, X_3, X_4, X_5 \)

<table>
<thead>
<tr>
<th>Correlations</th>
</tr>
</thead>
</table>

http://jurnal.umsu.ac.id/index.php/mtika/index Email: jmea@umsu.ac.id
From Table 4 it can be seen that the value of the Pearson correlation coefficient is as follows:

a. The value of the Pearson correlation coefficient between \(Y \) and \(X_1 \) is 0.467, which means that the level of relationship between variable \(Y \) and \(X_1 \) is moderate.

b. The value of the Pearson correlation coefficient between \(Y \) and \(X_2 \) is 0.416, which means that the level of relationship between variable \(Y \) and \(X_2 \) is moderate.

c. The value of the Pearson correlation coefficient between \(Y \) and \(X_3 \) is 0.380, which means that the level of relationship between variable \(Y \) and \(X_3 \) is low.

<table>
<thead>
<tr>
<th></th>
<th>Kinerja Karyawan (Y)</th>
<th>Transparancy (X1)</th>
<th>Accountability (X2)</th>
<th>Responsibility (X3)</th>
<th>Independency (X4)</th>
<th>Fairness (X5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Correlation</td>
<td>Pearson Correlation</td>
<td>(0.467^{**})</td>
<td>(0.416^{**})</td>
<td>(0.380^{**})</td>
<td>(0.487^{**})</td>
<td>(0.612^{**})</td>
</tr>
<tr>
<td>Sig. (2-tailed)</td>
<td></td>
<td>(0.001)</td>
<td>(0.004)</td>
<td>(0.009)</td>
<td>(0.001)</td>
<td>(0.000)</td>
</tr>
<tr>
<td>N</td>
<td></td>
<td>46</td>
<td>46</td>
<td>46</td>
<td>46</td>
<td>46</td>
</tr>
<tr>
<td>Correlation</td>
<td>Pearson Correlation</td>
<td>(0.467^{**})</td>
<td>(0.737^{**})</td>
<td>(0.569^{**})</td>
<td>(0.403^{**})</td>
<td>(0.708^{**})</td>
</tr>
<tr>
<td>Sig. (2-tailed)</td>
<td></td>
<td>(0.001)</td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.005)</td>
<td>(0.000)</td>
</tr>
<tr>
<td>N</td>
<td></td>
<td>46</td>
<td>46</td>
<td>46</td>
<td>46</td>
<td>46</td>
</tr>
<tr>
<td>Correlation</td>
<td>Pearson Correlation</td>
<td>(0.416^{**})</td>
<td>(0.737^{**})</td>
<td>(1.000^{**})</td>
<td>(0.470^{**})</td>
<td>(0.700^{**})</td>
</tr>
<tr>
<td>Sig. (2-tailed)</td>
<td></td>
<td>(0.004)</td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.001)</td>
<td>(0.000)</td>
</tr>
<tr>
<td>N</td>
<td></td>
<td>46</td>
<td>46</td>
<td>46</td>
<td>46</td>
<td>46</td>
</tr>
<tr>
<td>Correlation</td>
<td>Pearson Correlation</td>
<td>(0.380^{**})</td>
<td>(0.569^{**})</td>
<td>(0.608^{**})</td>
<td>(1.000^{**})</td>
<td>(0.473^{**})</td>
</tr>
<tr>
<td>Sig. (2-tailed)</td>
<td></td>
<td>(0.009)</td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.001)</td>
<td>(0.000)</td>
</tr>
<tr>
<td>N</td>
<td></td>
<td>46</td>
<td>46</td>
<td>46</td>
<td>46</td>
<td>46</td>
</tr>
<tr>
<td>Correlation</td>
<td>Pearson Correlation</td>
<td>(0.487^{**})</td>
<td>(0.403^{**})</td>
<td>(0.470^{**})</td>
<td>(0.473^{**})</td>
<td>(1.000^{**})</td>
</tr>
<tr>
<td>Sig. (2-tailed)</td>
<td></td>
<td>(0.001)</td>
<td>(0.005)</td>
<td>(0.001)</td>
<td>(0.001)</td>
<td>(0.000)</td>
</tr>
<tr>
<td>N</td>
<td></td>
<td>46</td>
<td>46</td>
<td>46</td>
<td>46</td>
<td>46</td>
</tr>
<tr>
<td>Correlation</td>
<td>Pearson Correlation</td>
<td>(0.612^{**})</td>
<td>(0.708^{**})</td>
<td>(0.700^{**})</td>
<td>(0.582^{**})</td>
<td>(0.529^{**})</td>
</tr>
<tr>
<td>Sig. (2-tailed)</td>
<td></td>
<td>(0.000)</td>
</tr>
<tr>
<td>N</td>
<td></td>
<td>46</td>
<td>46</td>
<td>46</td>
<td>46</td>
<td>46</td>
</tr>
</tbody>
</table>

**Correlation is significant at the 0.01 level (2-tailed).
d. The value of the Pearson correlation coefficient between Y and X_4 is 0.487, which means that the level of relationship between variable Y and X_4 is moderate.

e. The value of the Pearson correlation coefficient between Y and X_5 is 0.612, which means that the level of relationship between variable Y and X_5 is strong.

| Table 5. ANOVA between Y and X_1, X_2, X_3, X_4, X_5 |
|-----------------|-----------------|-----------------|-----------------|-----------------|
| Transparency (X1) | Between Groups | 388.678 | 38 | 10.228 | 1.923 | .083 |
| | Within Groups | 37.235 | 7 | 5.319 |
| | Total | 425.913 | 45 |
| Accountability (X2) | Between Groups | 330.398 | 38 | 8.695 | 1.868 | .104 |
| | Within Groups | 32.580 | 7 | 4.654 |
| | Total | 362.978 | 45 |
| Responsibility (X3) | Between Groups | 117.267 | 38 | 3.086 | 2.150 | .072 |
| | Within Groups | 10.059 | 7 | 1.437 |
| | Total | 127.326 | 45 |
| Independency (X4) | Between Groups | 208.867 | 38 | 5.497 | 3.540 | .015 |
| | Within Groups | 10.872 | 7 | 1.553 |
| | Total | 219.739 | 45 |
| Fairness (X5) | Between Groups | 139.362 | 38 | 3.667 | 3.631 | .005 |
| | Within Groups | 7.073 | 7 | 1.010 |
| | Total | 146.435 | 45 |

From Table 5 it can be seen that the smallest partial $F_{partial}$ with level (α) = 0.05 is 1.868 (variable X_2), while the F_{table} value with level(α) = 0.05 is $F_{(k-1;n-k)} = F_{(6-1;46-6)} = F_{(5;40)} = 2.45$. Therefore the smallest partial $F_{partial} < F_{table}$ then the variable X_2 comes out of the regression equation model.

Multiple Regression Equation Model between Y and X_1, X_3, X_4, X_5

The stages are as follows:

1. Multiple Regression Coefficients

| Table 6. Multiple Regression Equation Model between Y and $X_1, X_3, X_4, X_5 |
|-----------------|-----------------|-----------------|-----------------|-----------------|

http://jurnal.umsu.ac.id/index.php/mika/index

Email: jmea@umsu.ac.id
From Table 6 it can be obtained the values of the multiple regression coefficients are as follows:

\[\beta_0 = 8.079; \quad \beta_1 = 0.039; \quad \beta_3 = -0.042; \quad \beta_4 = 0.192; \quad \beta_5 = 0.471. \]

So that the multiple linear regression equation model that is formed is

\[Y = \beta_0 + \beta_1 X_1 + \beta_3 X_3 + \beta_4 X_4 + \beta_5 X_5 \]

\[Y = 8.079 + 0.039 X_1 - 0.042 X_3 + 0.192 X_4 + 0.471 X_5 \]

2. Testing the Significance of Multiple Regression

Table 7. ANOVA\(^a\) between \(Y \) and \(X_1, X_3, X_4, X_5 \)

<table>
<thead>
<tr>
<th>Model</th>
<th>Sum of Squares</th>
<th>Df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Regression</td>
<td>62.069</td>
<td>4</td>
<td>15.517</td>
<td>7.243</td>
</tr>
<tr>
<td></td>
<td>Residual</td>
<td>87.844</td>
<td>41</td>
<td>2.143</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>149.913</td>
<td>45</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

From Table 7 it can be seen that the \(F_{\text{count}} = 7.243 \) with a significant level \((\alpha) = 0.05 \), while \(F_{\text{table}} \) value with a significant level \((\alpha) = 0.05 \) is \(F_{(k-1;n-k)} = F_{(5-1;46-5)} = F_{(4;41)} = 2.60 \). Therefore \(F_{\text{hitung}} > F_{\text{table}} \), it can be concluded that regeneration means.

3. Testing Pearson Correlation and ANOVA

Table 8. Testing Pearson correlation between \(Y \) and \(X_1, X_3, X_4, X_5 \)

Correlations
<table>
<thead>
<tr>
<th></th>
<th>Kinerja Karyawan (Y)</th>
<th>Transparancy (X1)</th>
<th>Responsibility (X3)</th>
<th>Independence (X4)</th>
<th>Fairness (X5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kinerja Karyawan (Y)</td>
<td>Pearson Correlation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sig. (2-tailed)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.467**</td>
<td></td>
<td>.380**</td>
<td>.487**</td>
<td>.612**</td>
</tr>
<tr>
<td></td>
<td>.001</td>
<td></td>
<td>.009</td>
<td>.001</td>
<td>.000</td>
</tr>
<tr>
<td>Transparancy (X1)</td>
<td>Pearson Correlation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sig. (2-tailed)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
<td>.569**</td>
<td>.403**</td>
<td>.708**</td>
</tr>
<tr>
<td></td>
<td>.001</td>
<td></td>
<td>.005</td>
<td>.001</td>
<td>.000</td>
</tr>
<tr>
<td>Responsibility (X3)</td>
<td>Pearson Correlation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sig. (2-tailed)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.380**</td>
<td></td>
<td>1</td>
<td>.473**</td>
<td>.582**</td>
</tr>
<tr>
<td></td>
<td>.009</td>
<td></td>
<td>.000</td>
<td>.001</td>
<td>.000</td>
</tr>
<tr>
<td>Independence (X4)</td>
<td>Pearson Correlation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sig. (2-tailed)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.487**</td>
<td></td>
<td>.403**</td>
<td>.473**</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>.001</td>
<td></td>
<td>.005</td>
<td>.001</td>
<td>.000</td>
</tr>
<tr>
<td>Fairness (X5)</td>
<td>Pearson Correlation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sig. (2-tailed)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.612**</td>
<td></td>
<td>.708**</td>
<td>.582**</td>
<td>.529**</td>
</tr>
<tr>
<td></td>
<td>.000</td>
<td></td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>46</td>
<td>46</td>
<td>46</td>
<td>46</td>
<td>46</td>
</tr>
</tbody>
</table>

**. Correlation is significant at the 0.01 level (2-tailed).

From Table 8 it can be seen that the value of the Pearson correlation coefficient is as follows:

a. The value of the Pearson correlation coefficient between Y and X_1 is 0.467, which means that the level of relationship between variable Y and X_1 is moderate.

b. The value of the Pearson correlation coefficient between Y and X_3 is 0.380, which means that the level of relationship between variable Y and X_3 is low.
c. The value of the Pearson correlation coefficient between Y and X_4 is 0.487, which means that the level of relationship between variable Y and X_4 is moderate.

d. The value of the Pearson correlation coefficient between Y and X_5 is 0.612, which means that the level of relationship between variable Y and X_5 is strong.

Table 9. ANOVA between Y and X_1, X_3, X_4, X_5

<table>
<thead>
<tr>
<th>Variables</th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transparency (X1)</td>
<td>Between Groups</td>
<td>388.678</td>
<td>38</td>
<td>10.228</td>
<td>1.923</td>
</tr>
<tr>
<td></td>
<td>Within Groups</td>
<td>37.235</td>
<td>7</td>
<td>5.319</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>425.913</td>
<td>45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Responsibility (X3)</td>
<td>Between Groups</td>
<td>117.267</td>
<td>38</td>
<td>3.086</td>
<td>2.150</td>
</tr>
<tr>
<td></td>
<td>Within Groups</td>
<td>10.059</td>
<td>7</td>
<td>1.437</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>127.326</td>
<td>45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Independency (X4)</td>
<td>Between Groups</td>
<td>208.867</td>
<td>38</td>
<td>5.497</td>
<td>3.540</td>
</tr>
<tr>
<td></td>
<td>Within Groups</td>
<td>10.872</td>
<td>7</td>
<td>1.553</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>219.739</td>
<td>45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fairness (X5)</td>
<td>Between Groups</td>
<td>139.362</td>
<td>38</td>
<td>3.667</td>
<td>3.631</td>
</tr>
<tr>
<td></td>
<td>Within Groups</td>
<td>7.073</td>
<td>7</td>
<td>1.010</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>146.435</td>
<td>45</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

From Table 9 it can be seen that the smallest partial F_{partial} with level (α) = 0.05 is 1.923 (variable X_1), while the F_{table} value with level (α) = 0.05 is $F_{(k-1;n-k)} = F_{(5-1;46-5)} = F_{(4;41)} = 2.60$. Therefore the smallest partial $F_{\text{partial}} < F_{\text{table}}$ then the variable X_1 comes out of the regression equation model.

Multiple Regression Equation Model between Y and X_3, X_4, X_5

The stages are as follows:

1. **Multiple Regression Coefficients**

Table 10. Multiple Regression Equation Model between Y and $X_3, X_4, X_5

<table>
<thead>
<tr>
<th>Model</th>
<th>B</th>
<th>Std. Error</th>
<th>Beta</th>
<th>t</th>
<th>Sig.</th>
<th>Collinearity Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (Constant)</td>
<td>7.984</td>
<td>1.896</td>
<td></td>
<td>4.212</td>
<td>.000</td>
<td></td>
</tr>
<tr>
<td>Responsibility (X3)</td>
<td>-.025</td>
<td>.163</td>
<td>-.023</td>
<td>-.153</td>
<td>.879</td>
<td>.623 1.605</td>
</tr>
</tbody>
</table>
From Table 10 it can be obtained the values of the multiple regression coefficients are as follows:

\[\beta_0 = 7.984; \quad \beta_3 = -0.025; \quad \beta_4 = 0.192; \quad \beta_5 = 0.509. \]

So that the multiple linear regression equation model that is formed is

\[\hat{Y} = \beta_0 + \beta_3 X_3 + \beta_4 X_4 + \beta_5 X_5 \]
\[\hat{Y} = 7.984 - 0.025X_3 + 0.192X_4 + 0.509X_5 \]

2. Testing the Significance of Multiple Regression

Table 11. ANOVA\(^a\) between \(Y\) and \(X_3, X_4, X_5\)

<table>
<thead>
<tr>
<th>Model</th>
<th>Sum of Squares</th>
<th>Df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Regression</td>
<td>61.770</td>
<td>3</td>
<td>20.590</td>
<td>9.811</td>
<td>.000(^a)</td>
</tr>
<tr>
<td>Residual</td>
<td>88.143</td>
<td>42</td>
<td>2.099</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>149.913</td>
<td>45</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^a\) Dependent Variable: Kinerja Karyawan (Y)

From Table 11 it can be seen that the \(F_{\text{count}} = 9.811\) with a significant level \((\alpha) = 0.05\), while \(F_{\text{table}}\) value with a significant level \((\alpha) = 0.05\) is \(F_{(k-1;n-k)} = F_{(4-1;46-4)} = F_{(3;42)} = 2.83\). Therefore \(F_{\text{hitung}} > F_{\text{table}}\), it can be concluded that regeneration means.

3. Testing Pearson Correlation and ANOVA

Table 12. Testing Pearson correlation between \(Y\) and \(X_3, X_4, X_5\)

<table>
<thead>
<tr>
<th>X4</th>
<th>X5</th>
</tr>
</thead>
<tbody>
<tr>
<td>.192</td>
<td>.119</td>
</tr>
<tr>
<td>.232</td>
<td>1.615</td>
</tr>
<tr>
<td>.114</td>
<td>.679</td>
</tr>
<tr>
<td>1.472</td>
<td></td>
</tr>
<tr>
<td>.509</td>
<td>.157</td>
</tr>
<tr>
<td>.503</td>
<td>3.231</td>
</tr>
<tr>
<td>.002</td>
<td>.578</td>
</tr>
<tr>
<td>1.730</td>
<td></td>
</tr>
</tbody>
</table>

\(a.\) Dependent Variable: Kinerja Karyawan (Y)

\(b.\) Predictors: (Constant), Fairness (X5), Independency (X4), Responsibility (X3)
From Tabel 12 it can be seen that the value of the Pearson correlation coefficient is as follows:

- a. The value of the Pearson correlation coefficient between Y and X_3 is 0.380, which means that the level of relationship between variabel Y and X_3 is low.
- b. The value of the Pearson correlation coefficient between Y and X_4 is 0.487, which means that the level of relationship between variabel Y and X_4 is moderate.
- c. The value of the Pearson correlation coefficient between Y and X_5 is 0.612, which means that the level of relationship between variabel Y and X_5 is strong.

Table 13. ANOVA between Y and X_3, X_4, X_5

<table>
<thead>
<tr>
<th>Source</th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Responsibility (X3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Between Groups</td>
<td>117.267</td>
<td>38</td>
<td>3.086</td>
<td>2.150</td>
<td>.072</td>
</tr>
<tr>
<td>Within Groups</td>
<td>10.059</td>
<td>7</td>
<td>1.437</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>127.326</td>
<td>45</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Between Groups</td>
<td>208.867</td>
<td>38</td>
<td>5.497</td>
<td>3.540</td>
<td>.015</td>
</tr>
<tr>
<td>Within Groups</td>
<td>10.872</td>
<td>7</td>
<td>1.553</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>219.739</td>
<td>45</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Independency (X4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Between Groups</td>
<td>139.362</td>
<td>38</td>
<td>3.667</td>
<td>3.631</td>
<td>.005</td>
</tr>
<tr>
<td>Within Groups</td>
<td>7.073</td>
<td>7</td>
<td>1.010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>146.435</td>
<td>45</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

. Correlation is significant at the 0.01 level (2-tailed).
Table 13 it can be seen that the smallest partial F_{partial} with level (α) = 0.05 is 2.150 (variable X_3), while the F_{table} value with level (α) = 0.05 is $F_{(k-1;n-k)} = F_{(4-1;46-4)} = F_{(3;42)} = 2.83$. Therefore the smallest partial $F_{\text{partial}} < F_{\text{table}}$ then the variable X_3 comes out of the regression equation model.

Multiple Regression Equation Model between Y and X_4, X_5

The stages are as follows:

1. Multiple Regression Coefficients

 Table 14. Multiple Regression Equation Model between Y and $X_4, X_5

<table>
<thead>
<tr>
<th>Model</th>
<th>Unstandardized Coefficients</th>
<th>Standardized Coefficients</th>
<th>Collinearity Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>Std. Error</td>
<td>Beta</td>
</tr>
<tr>
<td>1 (Constant)</td>
<td>7.868</td>
<td>1.717</td>
<td>4.583</td>
</tr>
<tr>
<td>Independency (X4)</td>
<td>.187</td>
<td>.114</td>
<td>.227</td>
</tr>
<tr>
<td>Fairness (X5)</td>
<td>.498</td>
<td>.139</td>
<td>.492</td>
</tr>
</tbody>
</table>

a. Dependent Variable: Kinerja Karyawan (Y)

From Table 14 it can be obtained the values of the multiple regression coefficients are as follows:

$\beta_0 = 7.868; \beta_4 = 0.187; \beta_5 = 0.498$.

So that the multiple linear regression equation model that is formed is

$\hat{Y} = \beta_0 + \beta_4X_4 + \beta_5X_5$

$\hat{Y} = 7.868 + 0.187X_4 + 0.498X_5$

2. Testing the Significance of Multiple Regression

Table 15. ANOVA between Y and X_4, X_5

<table>
<thead>
<tr>
<th>Model</th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Regression</td>
<td>61.721</td>
<td>2</td>
<td>30.861</td>
<td>15.047</td>
<td>.000^b</td>
</tr>
<tr>
<td>Residual</td>
<td>88.192</td>
<td>43</td>
<td>2.051</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>149.913</td>
<td>45</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. Dependent Variable: Kinerja Karyawan (Y)
b. Predictors: (Constant), Fairness (X5), Independency (X4)

From Table 15 it can be seen that the $F_{\text{count}} = 15.047$ with a significant level (α) = 0.05, while F_{table} value with a significant level (α) = 0.05 is $F_{(k-1;n-k)} = F_{(3-1;46-3)} = F_{(2;43)} = 3.21$. Therefore $F_{\hat{h}1\text{tung}} > F_{\text{table}}$, it can be concluded that regeneration means.

3. Testing Pearson Correlation and ANOVA

Table 16. Testing Pearson correlation between Y and $X_4, X_5

Correlations
From Table 16 it can be seen that the value of the Pearson correlation coefficient is as follows:

a. The value of the Pearson correlation coefficient between Y and X_4 is 0.487, which means that the level of relationship between variable Y and X_4 is moderate.

b. The value of the Pearson correlation coefficient between Y and X_5 is 0.612, which means that the level of relationship between variable Y and X_5 is strong.

Table 17. ANOVA between Y and X_4, X_5

<table>
<thead>
<tr>
<th>Source</th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Independence (X4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Between Groups</td>
<td>208.867</td>
<td>38</td>
<td>5.497</td>
<td>3.540</td>
<td>.015</td>
</tr>
<tr>
<td>Within Groups</td>
<td>10.872</td>
<td>7</td>
<td>1.553</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>219.739</td>
<td>45</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fairness (X5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Between Groups</td>
<td>139.362</td>
<td>38</td>
<td>3.667</td>
<td>3.631</td>
<td>.005</td>
</tr>
<tr>
<td>Within Groups</td>
<td>7.073</td>
<td>7</td>
<td>1.010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>146.435</td>
<td>45</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

From Table 17 it can be seen that the smallest partial F_{partial} with level (α) = 0.05 is 3.540 (variable X_4), while the F_{table} value with level (α) = 0.05 is $F_{(3-1;46-3)} = F_{(2;43)} = 3.21$. Therefore the smallest partial $F_{\text{partial}} > F_{\text{table}}$, the variable X_4 does not come out of the regression equation model.

Estimator Formation

The stages are as follows:

1. **Estimator Equation in Backward Elimination Method**
 Of the five independent variables, there are only two variables included in the estimator equation model, namely variables X_4 and X_5. The estimator equation model of the variables X_4 and X_5 is as follows:

 $\hat{Y} = \beta_0 + \beta_4 X_4 + \beta_5 X_5$

 $\hat{Y} = 7.868 + 0.187 X_4 + 0.498 X_5$
2. Coefficient of Determination
 The value of the coefficient of determination formed from the backward elimination method is as follows:

 Table 18. Coefficient of Determination

<table>
<thead>
<tr>
<th>Model</th>
<th>R</th>
<th>Adjusted R Square</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.648^a</td>
<td>.419</td>
</tr>
</tbody>
</table>

 a. Predictors: (Constant), Fairness (X5), Independency (X4), Responsibility (X3), Transparency (X1), Accountability (X2)

 In Table 18 there is a large value of the coefficient of determination which is 0.419 or 41.9% and these results come from

 \[
 R^2 = (r)^2 \times 100\%
 \]
 \[
 R^2 = (0.648)^2 \times 100\%
 \]
 \[
 R^2 = 0.419 \times 100\%
 \]
 \[
 R^2 = 41.9\%
 \]

3. Residu Analysis
 The estimator equation formed from the backward elimination method can use tables to be able to analyze residues. The results of the residual analysis can be seen in Table 19.

 Table 19. Correlation Coefficient of Rank Spearman and Residues

<table>
<thead>
<tr>
<th>No.</th>
<th>Y</th>
<th>(\bar{Y})</th>
<th>(e_j)</th>
<th>Rank (\bar{Y})</th>
<th>Rank e</th>
<th>d</th>
<th>(d^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15</td>
<td>17,235</td>
<td>-2,235</td>
<td>19</td>
<td>41</td>
<td>-22</td>
<td>484</td>
</tr>
<tr>
<td>2</td>
<td>16</td>
<td>17,235</td>
<td>-1,235</td>
<td>19</td>
<td>34</td>
<td>-15</td>
<td>225</td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td>19,650</td>
<td>0,3499</td>
<td>3</td>
<td>18</td>
<td>-15</td>
<td>225</td>
</tr>
<tr>
<td>4</td>
<td>18</td>
<td>19,430</td>
<td>-1,430</td>
<td>6</td>
<td>38</td>
<td>-32</td>
<td>1024</td>
</tr>
<tr>
<td>5</td>
<td>18</td>
<td>18,660</td>
<td>-0,657</td>
<td>10</td>
<td>29</td>
<td>-19</td>
<td>361</td>
</tr>
<tr>
<td>6</td>
<td>20</td>
<td>19,594</td>
<td>0,406</td>
<td>4</td>
<td>17</td>
<td>-13</td>
<td>169</td>
</tr>
<tr>
<td>7</td>
<td>16</td>
<td>18,283</td>
<td>-2,283</td>
<td>12</td>
<td>43</td>
<td>-31</td>
<td>961</td>
</tr>
<tr>
<td>8</td>
<td>18</td>
<td>15,441</td>
<td>2,560</td>
<td>39</td>
<td>3</td>
<td>36</td>
<td>1296</td>
</tr>
<tr>
<td>9</td>
<td>14</td>
<td>16,265</td>
<td>-2,265</td>
<td>31</td>
<td>42</td>
<td>-11</td>
<td>121</td>
</tr>
<tr>
<td>10</td>
<td>19</td>
<td>17,699</td>
<td>1,301</td>
<td>15</td>
<td>9</td>
<td>6</td>
<td>36</td>
</tr>
<tr>
<td>11</td>
<td>19</td>
<td>20,112</td>
<td>-1,112</td>
<td>2</td>
<td>32</td>
<td>-30</td>
<td>900</td>
</tr>
<tr>
<td>12</td>
<td>18</td>
<td>19,319</td>
<td>-1,319</td>
<td>7</td>
<td>37</td>
<td>-30</td>
<td>900</td>
</tr>
<tr>
<td>13</td>
<td>17</td>
<td>17,291</td>
<td>-0,291</td>
<td>17</td>
<td>27</td>
<td>-10</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>17</td>
<td>19,164</td>
<td>-2,164</td>
<td>9</td>
<td>40</td>
<td>-31</td>
<td>961</td>
</tr>
<tr>
<td>15</td>
<td>17</td>
<td>19,506</td>
<td>-2,506</td>
<td>5</td>
<td>44</td>
<td>-39</td>
<td>1521</td>
</tr>
<tr>
<td>16</td>
<td>18</td>
<td>17,942</td>
<td>0,058</td>
<td>13</td>
<td>20</td>
<td>-7</td>
<td>49</td>
</tr>
<tr>
<td>17</td>
<td>18</td>
<td>17,489</td>
<td>0,511</td>
<td>16</td>
<td>16</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>17</td>
<td>16,750</td>
<td>0,250</td>
<td>28</td>
<td>19</td>
<td>9</td>
<td>81</td>
</tr>
<tr>
<td>19</td>
<td>16</td>
<td>17,112</td>
<td>-1,112</td>
<td>25</td>
<td>32</td>
<td>-7</td>
<td>49</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>19,252</td>
<td>0,748</td>
<td>8</td>
<td>13</td>
<td>-5</td>
<td>25</td>
</tr>
<tr>
<td>21</td>
<td>13</td>
<td>15,667</td>
<td>-2,667</td>
<td>38</td>
<td>45</td>
<td>-7</td>
<td>49</td>
</tr>
<tr>
<td>22</td>
<td>20</td>
<td>18,338</td>
<td>1,662</td>
<td>11</td>
<td>8</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>23</td>
<td>16</td>
<td>15,262</td>
<td>0,738</td>
<td>42</td>
<td>14</td>
<td>28</td>
<td>784</td>
</tr>
<tr>
<td>24</td>
<td>29</td>
<td>20,278</td>
<td>8,722</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>25</td>
<td>16</td>
<td>17,235</td>
<td>-1,235</td>
<td>19</td>
<td>34</td>
<td>-15</td>
<td>225</td>
</tr>
<tr>
<td>26</td>
<td>16</td>
<td>17,235</td>
<td>-1,235</td>
<td>19</td>
<td>34</td>
<td>-15</td>
<td>225</td>
</tr>
<tr>
<td>27</td>
<td>17</td>
<td>15,093</td>
<td>1,907</td>
<td>43</td>
<td>6</td>
<td>37</td>
<td>1369</td>
</tr>
<tr>
<td>28</td>
<td>18</td>
<td>17,004</td>
<td>0,996</td>
<td>26</td>
<td>11</td>
<td>15</td>
<td>225</td>
</tr>
<tr>
<td>29</td>
<td>17</td>
<td>17,941</td>
<td>-0,941</td>
<td>14</td>
<td>31</td>
<td>-17</td>
<td>289</td>
</tr>
<tr>
<td>30</td>
<td>17</td>
<td>15,270</td>
<td>1,730</td>
<td>41</td>
<td>7</td>
<td>34</td>
<td>1156</td>
</tr>
<tr>
<td>31</td>
<td>17</td>
<td>15,041</td>
<td>1,959</td>
<td>44</td>
<td>5</td>
<td>39</td>
<td>1521</td>
</tr>
<tr>
<td>32</td>
<td>18</td>
<td>16,806</td>
<td>1,194</td>
<td>27</td>
<td>10</td>
<td>17</td>
<td>289</td>
</tr>
<tr>
<td>33</td>
<td>18</td>
<td>17,155</td>
<td>0,8446</td>
<td>24</td>
<td>12</td>
<td>12</td>
<td>144</td>
</tr>
<tr>
<td>34</td>
<td>16</td>
<td>16,176</td>
<td>-0,176</td>
<td>32</td>
<td>23</td>
<td>9</td>
<td>81</td>
</tr>
<tr>
<td>35</td>
<td>16</td>
<td>15,394</td>
<td>0,606</td>
<td>40</td>
<td>15</td>
<td>25</td>
<td>625</td>
</tr>
<tr>
<td>36</td>
<td>14</td>
<td>14,667</td>
<td>-0,667</td>
<td>45</td>
<td>30</td>
<td>15</td>
<td>225</td>
</tr>
<tr>
<td>37</td>
<td>19</td>
<td>16,411</td>
<td>2,589</td>
<td>29</td>
<td>2</td>
<td>27</td>
<td>729</td>
</tr>
<tr>
<td>38</td>
<td>17</td>
<td>17,213</td>
<td>-0,213</td>
<td>23</td>
<td>24</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>39</td>
<td>16</td>
<td>15,988</td>
<td>0,012</td>
<td>35</td>
<td>21</td>
<td>14</td>
<td>196</td>
</tr>
<tr>
<td>40</td>
<td>18</td>
<td>15,700</td>
<td>2,300</td>
<td>37</td>
<td>4</td>
<td>33</td>
<td>1089</td>
</tr>
<tr>
<td>41</td>
<td>13</td>
<td>16,012</td>
<td>-3,012</td>
<td>34</td>
<td>46</td>
<td>-12</td>
<td>144</td>
</tr>
<tr>
<td>42</td>
<td>14</td>
<td>15,724</td>
<td>-1,725</td>
<td>36</td>
<td>39</td>
<td>-3</td>
<td>9</td>
</tr>
<tr>
<td>43</td>
<td>17</td>
<td>17,249</td>
<td>-0,249</td>
<td>18</td>
<td>25</td>
<td>-7</td>
<td>49</td>
</tr>
<tr>
<td>44</td>
<td>16</td>
<td>16,276</td>
<td>-0,276</td>
<td>30</td>
<td>26</td>
<td>4</td>
<td>16</td>
</tr>
</tbody>
</table>
a. Assumption (i): the average residual equals zero
 From Table 19 it can be seen that the average residual value of e_j is 0, then the assumption statement (i) is fulfilled.

b. Assumption (ii): variance $(e_j) = $ variance $(e_k) = \sigma^2$
 The proof of this assumption can be done with the Rank Spearman test.
 a) Spearman Rank Test

 \[r_s = 1 - \frac{6 \sum d^2}{n(n^2 - 1)} \]

 \[r_s = 1 - \frac{6 \times 15.382}{46[(46)^2 - 1]} \]

 \[r_s = 1 - \frac{92.292}{46(2.116 - 1)} \]

 \[r_s = 1 - \frac{92.292}{46 \times 2.115} \]

 \[r_s = 1 - \frac{92.292}{97.290} \]

 \[r_s = 0,948 \]

 \[r_s = 0,052 \]

 b) Find the calculated value

 \[t_{hitung} = \frac{r_s \sqrt{n - 2}}{\sqrt{1 - r_s^2}} \]

 \[t_{hitung} = \frac{0,052 \times \sqrt{46 - 2}}{\sqrt{1 - (0,052)^2}} \]

 \[t_{hitung} = \frac{0,052 \times \sqrt{44}}{\sqrt{1 - 0,002704}} \]

 \[t_{hitung} = \frac{0,052 \times 6,63324958071}{\sqrt{0,997296}} \]

 \[t_{hitung} = \frac{0,3449289782}{0,99864708481} \]

 \[t_{hitung} = 0,345 \]
From the calculation above, it is known that \(n = 46 \) with a significant level \(\alpha = 0.05 \), the value \(t_{\text{count}} \) of is 0.345 while the value of \(t_{\text{table}} \) is \(t_{\text{table}} = t(\alpha / 2, n - k) = t(0.05 / 2; 46 - 6) = t(0.025; 40) = 2.02108 \). Therefore, \(t_{\text{count}} < t_{\text{table}} \) the assumption statement (ii) is fulfilled.

c. Assumptions (iii): covariance \((e_j, e_k) = 0; j \neq k \)

![Figure 1. Heteroscedasticity Test](image)

In Figure 1 the distribution of the points above and below or around zero does not form a particular pattern or flow, so it can be concluded that there is no heteroscedasticity. Thus, the assumptions are met and the regression model can be used to predict the variables that have the greatest influence on the application of the principles of Good Corporate Governance at PT. Asuransi Jasa Indonesia Medan Branch Office.

Conclusions

Based on the results and discussion, it can be concluded that from the five factors, namely transparency \((X_1) \), accountability \((X_2) \), responsibility \((X_3) \), independency \((X_4) \) and fairness \((X_5) \) there are two factors that most influence the application of the principles of Good Corporate Governance at PT. Asuransi Jasa Indonesia Medan Branch Office, namely independency \((X_4) \) and fairness \((X_5) \) with the regression equation model is \(\hat{Y} = 8.056 + 0.069X_1 - 0.078X_2 - 0.018X_3 + 0.200X_4 + 0.501X_5 \) and based on Pearson correlation (Pearson product moment), a fairly close relationship between the dependent variable and the independent variable is the relationship between employee performance and fairness with a value of 0.612.

REFERENCE

Nurcahyani dkk, 2013. Penerapan Good Corporate Governance Dan Kepemilikan Institusional Terhadap Kinerja Keuangan

