Application of Goal Programming Method in Production Optimization of Crude Palm Oil and Crude Palm Karnel Oil (Case Study: Pt. Barumunagro Sentosa)

Annisa Rizwana^{1*}, Putri Khairiah Nasution²

¹Bachelor Facultyof Mathematics and Natural Sciences, Universitas Sumatera Utara, Indonesia ²Lecturer atFacultyof Mathematics and Natural Sciences, Universitas Sumatera Utara, Indonesia *Corresponding Author. E-mail: <u>annisarizwana@gmail.com</u>

Article Info	ABSTRACT
Article History Received : 20 Januari 2023 Accepted: 31 Oktober 2023 Published: 31 Oktober 2023	Planning in production is an action from a company that can determine the success of a company. PT. BarumunAgro Sentosa is a company that owns palm oil plantations and mills. This study aims to analyze the method <i>Goal Programming</i> and its completion in production planning <i>Crude Palm OilandCrude Palm Kernel Oil</i> in the period January – December 2022
Keywords: CPKO Production, CPO Production, Goal Programming, Production Optimization.	Completion of the method <i>Goal Programming</i> in optimizing the production of CPO and CPKO in this study using the help of LINDO software (<i>Linear Interactive Discrete Optimizer</i>). Completion of this method first performs a projection or forecast of the number of requests obtained from the previous period's demand data with Minitab software. The results obtained from this study are that the optimal amount of CPO production for the period January - December 2022 is 74,803,459 kg from the initial target of 73,420,955 kg and for the optimal amount of CPKO production for the period January - December 2022 is 7,058,777 kg from the initial target of 5,937. 531 kg The total production of CPO and CPKO has no deviation so that the production of CPO and CPKO can be said to be optimal.
	This is an open access article under the <u>CC-BY-SA</u> license

To cite this article:		

INTRODUCTION

In the industrial world, companies must pay attention to many things, one of which is production results or commonly referred to as products. Starting from the quantity of production, quality, and the quality of the products produced. In order to maximize profits, companies must make a structured and optimal production plan. Thus, the company can generate production assumptions that will be obtained to be precise and optimal using minimum costs (Hajiyanto, 2014)

Production planning is a determinant of the success of a company. The number of products produced is determined from the production planning process and considers previous documents so that it is balanced with market demand (Ginting, 2007). In preparing a structured production plan, companies must consider all constraints, so that the level of costs required will be even lower. Thus, optimizing production planning actions allows more than one company to achieve goals (Anis, 2007).

Oil palm is a plant classification from the Arcaceae family that can produce edible oil. In the Indonesian economy, palm oil has a high selling value and is the biggest contributor to the country's deviation compared to other plantation commodities (Baroto, 2002). The community believes that palm oil remains a source of vegetable oil and is the most important ingredient for the agricultural industry. The process of processing oil palm fruit, namely Fresh Fruit Bunches (FFB) into palm oil, namely Crude Palm Oil (CPO) and palm kernel oil, namely Crude Karnel Palm Oil (CKPO) must be carried out with optimal planning so that the maximum production produced is in accordance with the availability of resources as well. remain profitable and still have a high resale value (Armindo, 2006).

According to Sukamto (2008), a palm oil mill (PKS) processes palm fruit into palm oil, namely crude palm oil (CPO) and crude palm kernel oil (CPKO). The processing of fresh fruit is quite long and requires careful monitoring. Each step in fresh fruit (FFB) processing influences the next step in the process. The following is the flow of FFB production into CPO and CPKO:

Researchers consider it important to examine the production process of Crude Palm Oil and Crude Palm Kernel Oil from palm oil mills, especially PT. BarumunAgro Sentosa (PT. BAS). In its operations, PT. BarumunAgro Sentosa obtains raw materials from plantations owned by the company. With the processing time capacity of the CPO machinefor 60,000 kg/hour and CPKO machine 5,000 kg/hour.

One of the problems that is often faced and must be considered in maximizing production results is the provision of optimal raw materials. Excessive and sub-optimal yields can cause the factory to be in idle capacity. Idle capacity conditions can reduce the quality of CPO and also harm the company. There are several methods in mathematics that can be applied in solving production planning optimization problems. One of the many methods is the Goal Programming method (Lestari, 2021).

Forecasting is a process to estimate future needs include size requirementstime, quantity, quality, and location needed into meet demand for goods or services. Forecastingmuch needed for complex market demandsand dynamic (Makridatis dan Steven, 1999).

Main thoughts in using linear programmingis to formulate the problem clearly usingnumber of available sources of information. After troublewell formulated, namely translating the problem intoin the form of a mathematical model so that the optimal decisioncan be got. (Siagian, 2006).

According to Bu'lolo (2016) Goal Programming is an extension of the liner programming model. Linear Programming is a method for solving problems that allocates limited resources such as labor, raw materials (FFB), machinery and other supporting equipment in the best way so that maximization can be obtained which can be in the form of maximizing profits or maximizing in the form of minimizing production costs. Method*Goal Programming* is a method that is able to make solutions to problems with cases that have more than one goal.*Goal Programming* has a variable called the deviation variable or deviation. Where, the deviation variable shows positive deviation and negative deviation.

LINDO is a software that was created to solve problems in solving cases that exist in linear programming. LINDO can solve linear programming cases by converting cases into mathematical models with a certain format (Siswanto, 1993).

RESEARCH METHOD

In this study, the data was obtained by the author from company data in 2021. The research location is PT. BarumunAgro Sentosa whose address is in JambuTonang Village, Simangambat District, North Padang Lawas Regency, North Sumatra Province.

This research was conducted with the following steps:

- Make projections or forecasts (*forecasting*) on FFB yields and demand for CPO and CPKO for 2022 which will be used as the target for CPO and CPKO production in 2022. The data used to make forecasts or projections are FFB yield data and demand for CPO and CPKO in 2021. The data which has been obtained is calculated using the exponential smoothing method by comparing the error value on the forecast. The best forecast is the one with the smallest error.
- 2. Function Formulation

ii.

a. Determine decision variables,

namely the results to be optimized so that they meet the target criteria and constraints which will become the decision variables for optimizing production at PT. BarumunAgro Sentosa.

- i. The quantity of CPO to be produced monthly by 2022.
 - x_{1i} = Total production of CPO (Kg); *i* = January December.
 - CPKO quantity to be produced monthly by 2022.
 - x_{2i} = Amount of CPKO production (Kg); *i* = January December.

b. Constraint Function

1. Availability of Fresh Fruit Bunches (FFB)

 $\begin{array}{l} A_{jan} X_{jan} + d_{1}^{-} - d_{1}^{+} = C_{jan} \\ A_{feb} X_{feb} + d_{2}^{-} - d_{2}^{+} = C_{feb} \\ & \vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots \end{array}$

$$A_{des}X_{des} + d_{12}^- - d_{12}^+ = C_{des}$$

where:

A _{jan} , ,A _{des}	: Availability value of FFB in January – December 2021
X_{jan}, \dots, X_{des}	: Decision variable for the target availability of FFB
	January - December 2022
C _{jan} , … , C _{des}	: Target value of FFB availability January – December 2022
d_1^- , \cdots , d_{12}^-	: Negative deviation of the FFB availability target
d_{1}^{+} , \cdots , d_{12}^{+}	: Positive deviation of the FFB availability target

2. Obstacles in the production of FFB into CPO

$$\begin{array}{rcl} M_{jan} X_{1jan} &+ d_{12}^{-} - d_{13}^{+} = a_{1jan} \\ M_{feb} X_{1feb} &+ d_{14}^{-} - d_{14}^{+} = a_{1feb} \\ \vdots & \vdots & \vdots \end{array}$$

 $M_{des}X_{1des} + d_{24}^- - d_{24}^+ = a_{1des}$

where:

M _{jan} , ,M _{des}	: CPO production value January – December 2021
$X_{1jan}, \dots, X_{1des}$: Decision variable for January CPO production –December 2022
a_{1jan} , \cdots , a_{1des}	: CPO production target January – December 2022
d_{13}^{-} , \cdots , d_{24}^{-}	: Negative deviation of the CPO production target
d^+_{13} , \cdots , d^+_{24}	: Positive deviation of the CPO production target

3. Obstacles in processing FFB to CPKO $N_{ian} X_{2ian} + d_{25}^{-} - d_{25}^{+} = b_{2ian}$

1	jan 12jan 1 425	$\alpha_{25} = \sigma_{2jan}$						
Ν	$I_{feb} X_{2feb} + d_{26}^{-}$	$-d_{26}^+ = b_{2feb}$						
			:	:	:			
	$I_{des}X_{2des} + d_{36}^-$	$-d_{36}^+ = b_{2des}$						
W	/here :							
N	I _{jan ,} ,M _{des}	: CPKO production value January – December 2021						
Х	2jan , ,X _{2des}	: Decision vari	ables for	Januar	у СРКО	productio	on - Decemb	er 2022
Х	2jan , ,X _{2des}	: CPO product	ion targe	t Janua	ry – De	cember 2	022	
	$L_{25}^{-}, \cdots, d_{36}^{-}$: Negative dev	viation of	CPKO p	product	ion target		
d	d_{25}^+,\cdots,d_{36}^+	: Positive devi	ation of (CPKO pr	roductio	on target		

4. Constraints to the availability of CPO processing time

 $t_{jan} X_{1jan} + d_{37}^- - d_{37}^+ = T$ $t_{feb}X_{1feb} + d_{38}^- - d_{38}^+ = T$ ÷ ÷ : ÷ $t_{des}X_{1des} + d_{48}^- - d_{48}^+ = T$ where : : Time needed to produce CPO each month t X_{1jan} , ..., X_{1des} : CPO produced from January to December 2022 : Negative deviation of processing time availabilityCPO $d_{37}^{-}, \dots, d_{48}^{-}$: Positive deviation of processing time availabilityCPO $d_{37}^+, \dots, d_{48}^+$ т : The maximum processing time availableavailable (hours)

5. CPKO processing time availability constraints.

$$t_{jan} X_{2jan} + d_{49}^{-} - d_{49}^{+} = T$$

$$t_{feb} X_{2feb} + d_{50}^{-} - d_{50}^{+} = T$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$t_{des} X_{2des} + d_{60}^{-} - d_{60}^{+} = T$$

where :

t	: Time required to generate each CPKO month
X_{2jan} , , X_{2des}	: CPKO produced from January to December2022
d_{49}^{-1} ,, d_{60}^{-1}	: Negative deviation of time availabilityCPKO processing
d_{49}^+ , , d_{60}^+	: Positive deviation of processing time availabilityCPKO
Т	: The maximum processing time availableavailable (hours)

6. Constraints on the target of processing FFB into CPO

 $\begin{array}{l} P_{1jan} X_{jan} + d_{61}^{-} + d_{61}^{+} = 0 \\ P_{1feb} X_{feb} + d_{62}^{-} + d_{62}^{+} = 0 \\ \vdots & \vdots & \vdots \\ P_{1des} X_{des} + d_{72}^{-} + d_{72}^{+} = 0 \\ \end{array}$ where: $\begin{array}{l} P_{1jan} , \cdots , P_{1des} & : \text{Yield of CPO January - December} \\ X_{jan} , \cdots , X_{des} & : \text{FFB availability decision variable in January- December} \end{array}$

- $\begin{array}{ll} d_{61}^-, \cdots, d_{72}^- & : \text{Negative deviation of FFB processing target} \\ d_{61}^+, \cdots, d_{72}^+ & : \text{Positive deviation of FFB processing targets} \end{array}$
- 7. Constraints on the target of processing FFB into CPKO.

 $P_{2jan} X_{jan} + d_{73}^- + d_{73}^+ = 0$

 $P_{2feb}X_{feb} + d_{74}^- + d_{74}^+ = 0$

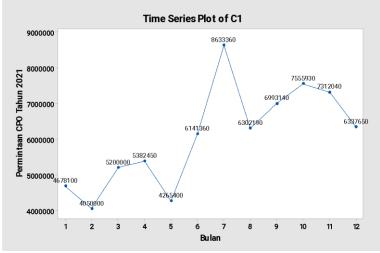
: : : :

 $P_{2des}X_{des} + d_{84}^- + d_{84}^+ = 0$

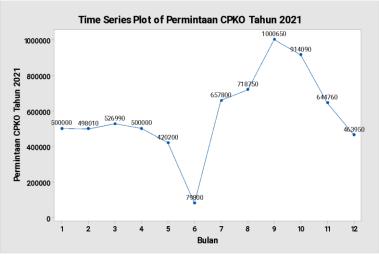
where :

 P_{2jan} , \cdots , P_{2des} : Yield of CPKO January – December X_{jan} , \cdots , X_{des} : FFB availability decision variable in January –December d_{73}^- , \cdots , d_{84}^- : Negative deviation of FFB processing target d_{73}^+ , \cdots , d_{84}^+ : Positive deviation of FFB processing targets

- 3. Precalculation solutions with *software* Minitab and optimal solution problems with methods *GoalProgramming* with *software* PRETTY.
- 4. Analyze the results and draw conclusions.


RESULTS AND DISCUSSION

1. Forecast (Projection)


Projected demand for CPO and CPKO at PT. BarumunAgro Sentosa in 2022 (January - December) aims to reduce the high value of deviations that may occur when forecasting. Data can be seen in the table on the average percentage of requests per month in 2021.

a. Creating Data Patterns

In determining the data pattern, the author will plot the CPO and CPKO demand data for 2021 in the form of a time graph. This step aims to see the pattern of data formed in order to determine the most appropriate forecasting method. The author will plot the data using Minitab software.

Graph 1. Graph of January – December 2021 CPO demand

Graph 2. CPKO Demand Graph January – December 2021.

b. Choosing a Forecast Method (Projection)

The author will choose the best projection method that will be adjusted to the acquisition of data patterns. The author will analyze the single exponential smoothing, double exponential smoothing, and seasonal exponential smoothing methods to find out the lowest accuracy value. The author will determine the parameter values of α , β , γ each is 0.2. The selection of this value will be done with*software*Minitab and based on the smallest MAPE value (Juliana, 2017).

c. Forecast Results (Projections)

Based on the forecast projection graph on FFB yields and demand for CPO and CPKO respectively with *Double Exponential Smoothing, Double Exponential Smoothingdan Single Exponential Smoothing*, then the projection results for the period January - December for 2022 are as follows:

Moon	FFB Projection	CPO Demand Projection	CPKO Demand Projection
MOON	(kg)	(kg)	(kg)
January	22.733.588	4.517.877	420.833
February	23.827.866	4.838.711	436.667
March	23.758.088	4.938.209	448.935
April	25.514.849	5.258.280	464.546
May	26.860.533	5.555.793	471.637
June	28.390.249	5.518.778	461.350
July	30.481.592	5.889.261	385.040
August	33.551.224	6.793.811	439.592
September	36.891.006	7.031.553	495.423
October	38.893.280	7.358.400	596.469
November	40.166.971	7.740.336	659.993
December	40.519.618	7.979.976	656.946
Amount	371.558.864	73.420.985	5.937.431

Table 1. FFB Harvest Projection Results and Demand for CPO and CPKO in 2022

2. Sorting Data into Functions*Goal Programming*

a. Decision Variables

The decision variables in this study are as follows:

X _{1januari}	$-X_{1desember}$: Amount of CPO Production January – December.
X _{2januari} -	- $X_{2desember}$: Number of CPKO Production January – December.
With the fo	ollowing deviation variables:
$d_1^ d_{12}^-$: the target number of FFB availability that is below the target.
$d_1^+ - d_{12}^+$: the target number of FFB availability that is above the target.
$d^{13} - d^{24}$: the number of CPO production targets that are below the target.
$d_{13}^+ - d_{24}^+$: the number of CPO production targets that are above the target.
$d_{25}^ d_{36}^-$: the number of CPKO production targets that are below the target.
$d_{25}^+ - d_{36}^+$: the number of CPKO production targets that are above the target.
$d^{37} - d^{48}$: the number of target CPO processing times that are below target.
$d^+_{37} - d^+_{48}$: total target CPO processing time above target.
$d^{49} - d^{60}$: number of CPKO processing time targets that are inunder target.
$d_{49}^+ - d_{60}^+$: number of CPKO processing time targets that are in under target.
$d^{61} - d^{72}$: the target number of FFB processing into CPO located in under target.
$d^+_{61} - d^+_{72}$: number of targets for processing FFB into existing CPOover the mark.
$d^{73} - d^{84}$: the target number of FFB processing into existing CPKO under target.
$d^+_{84} - d^+_{84}$: the target number of FFB processing into existing CPKOover the mark.

b. Formulation and target constraints

1.	Constraints on target availability of Raw	
	$21.404.560 X_{januari} + d_1^ d_1^+$	= 22.733.588
	$17.870.110 X_{februari} + d_2^ d_2^+$	= 23.837.866
	$26.403.870X_{maret} + d_3^ d_3^+$	= 23.758.088
	$26.006.850 X_{april} + d_4^ d_4^+$	= 25.514.849
	$28.037.330X_{mei} + d_5^ d_5^+$	= 26.860.533
	$31.711.030X_{juni} + d_6^ d_6^+$	= 28.390.249
	$37.325.110 X_{juli} + d_7^ d_7^+$	= 30.481.592
	$40.379.780 X_{agustus} + d_8^ d_8^+$	= 33.551.224
	$37.008.520 X_{september} + d_9^ d_9^+$	= 36.891.006
	$35.955.450 X_{oktober} + d_{10}^ d_{10}^+$	= 38.893.280
	$33.881.090X_{november} + d_{11}^ d_{11}^+$	= 40.166.971
	$30.093.490X_{desember} + d_{12}^ d_{12}^+$	= 40.519.618

2. CPO production target target constraints

$4.310.526X_{1januari} + d_{13}^ d_{13}^+$	= 4.517.877
$3.582.070X_{1februari} + d_{14}^ d_{14}^+$	= 4.838.711
$5.221.617X_{1maret} + d_{15}^ d_{15}^+$	= 4.938.209
$4.986.458X_{1april} + d_{16}^ d_{16}^+$	= 5.258.280
$5.417.253X_{1mei} + d_{17}^ d_{17}^+$	= 5.555.793
$6.250.318X_{1juni} + d_{18}^ d_{18}^+$	= 5.518.778
$7.164.551X_{1juli} + d_{19}^ d_{19}^+$	= 5.889.261
$7.583.007X_{1agustus} + d_{20}^ d_{20}^+$	= 6.793.811

	$\begin{array}{l} 6.827.639X_{1september} + d_{21}^{-} - d_{21}^{+} \\ 7.026.411X_{1oktober} + d_{22}^{-} - d_{22}^{+} \\ 6.825.916X_{1november} + d_{23}^{-} - d_{23}^{+} \\ 6.112.357X_{1desember} + d_{24}^{-} - d_{24}^{+} \end{array}$	= 7.031.553 = 7.358.400 = 7.740.336 = 7.979.976
3.	Constraints on CPKO production targets $439.330X_{2januari} + d_{25}^ d_{25}^+$ $405.035X_{2februari} + d_{26}^ d_{26}^+$ $550.500X_{2maret} + d_{27}^ d_{27}^+$ $515.251X_{2april} + d_{28}^ d_{28}^+$ $513.568X_{2mei} + d_{29}^ d_{29}^+$ $657.447X_{2juni} + d_{30}^ d_{30}^+$ $498.168X_{2juli} + d_{31}^ d_{31}^+$ $724.735X_{2agustus} + d_{32}^ d_{32}^+$ $680.624X_{2september} + d_{33}^ d_{34}^+$ $636.021X_{2november} + d_{34}^ d_{35}^+$ $625.292X_{2dese mber} + d_{36}^ d_{36}^+$	= 420.833 = 436.667 = 448.935 = 464.546 = 471.637 = 461.350 = 385.040 = 439.592 = 495.423 = 596.469 = 659.993 = 656.946

4. Constraints target availability of CPO processing time

	•
$357X_{1jan} + d_{37}^ d_{37}^+$	= 379
$298X_{1feb} + d_{38}^ d_{38}^+$	= 397
$440X_{1mar} + d_{39}^ d_{39}^+$	= 396
$433X_{1apr} + d_{40}^ d_{40}^+$	= 425
$467X_{1mei} + d_{41}^ d_{41}^+$	= 448
$529X_{1jun} + d_{42}^ d_{42}^+$	= 473
$622X_{1jul} + d_{43}^ d_{43}^+$	= 508
$673X_{1agst} + d_{44}^ d_{44}^+$	= 559
$617X_{1sep} + d_{45}^ d_{45}^+$	= 615
$599X_{1okt} + d_{46}^ d_{46}^+$	= 648
$565X_{1nov} + d_{47}^ d_{47}^+$	= 669
$502X_{1des} + d_{48}^ d_{48}^+$	= 675

5. Obstacles to target availability of CPKO processing time

$214X_{2jan} + d_{49}^ d_{49}^+$	= 227
$179X_{2feb} + d_{50}^ d_{50}^+$	= 238
$264X_{2mar} + d_{51}^ d_{51}^+$	= 238
$260X_{2apr} + d_{52}^ d_{52}^+$	= 255
$280X_{2mei} + d_{53}^ d_{53}^+$	= 269

$317X_{2jun} + d_{54}^ d_{54}^+$	= 284
$373X_{2jul} + d_{55}^ d_{55}^+$	= 305
$404X_{2agst} + d_{56}^ d_{56}^+$	= 336
$370X_{2sep} + d_{57}^ d_{57}^+$	= 369
$360X_{2okt} + d_{58}^ d_{58}^+$	= 389
$339X_{2nov} + d_{59}^ d_{59}^+$	= 402
$301X_{2des} + d_{60}^ d_{60}^+$	= 405

6. Constraints on the target of processing FFB into CPO

	~
$0,1969X_{jan} + d_{61}^ d_{61}^-$	= 0
$0,1978X_{feb} + d_{62}^ d_{62}^-$	= 0
$0,1983X_{mar} + d_{63}^ d_{63}^-$	= 0
$0,1982X_{apr} + d_{64}^ d_{64}^-$	= 0
$0,1969X_{mei} + d_{65}^ d_{65}^-$	= 0
$0,1961X_{jun} + d_{66}^ d_{66}^-$	= 0
$0,1963X_{jul} + d_{67}^ d_{67}^-$	= 0
$0,1954X_{agst} + d_{68}^ d_{68}^-$	= 0
$0,2139X_{sep} + d_{69}^ d_{69}^-$	= 0
$0,2080X_{okt} + d_{70}^ d_{70}^-$	= 0
$0,2055X_{nov} + d_{71}^ d_{71}^-$	= 0
$0,2047X_{des} + d_{72}^ d_{72}^-$	= 0

7. Constraints on the target of processing FFB into CPKO

$0,0204X_{jan} + d_{73}^ d_{73}^-$	= 0
$0,0204X_{feb} + d_{74}^ d_{74}^-$	= 0
$0,0208X_{mar} + d_{75}^ d_{75}^-$	= 0
$0,0208X_{apr} + d_{76}^ d_{76}^-$	= 0
$0,0206X_{mei} + d_{77}^ d_{77}^-$	= 0
$0,0201X_{jun} + d_{78}^ d_{78}^-$	= 0
$0,0202X_{jul} + d_{79}^ d_{79}^-$	= 0
$0,0188X_{agst} + d_{80}^ d_{80}^-$	= 0
$0,0186X_{sep} + d_{81}^ d_{81}^-$	= 0
$0,0186X_{okt} + d_{82}^ d_{82}^-$	= 0
$0,0185X_{nov} + d_{83}^ d_{83}^-$	= 0
$0,0185X_{des} + d_{84}^ d_{84}^-$	= 0

3. The optimal solution with software PRETTY

Based on constraint function *goal programming* which has been formulated with negative deviations, namely DB and positive deviations, namely DA, the results are:

MoonTargetOptimal Solution for Availab VariableJanuary22.733.588 X_{jan} 22.733	it (kg) 3.591 Achieved
Variable Weigh	it (kg) 3.591 Achieved
January 22.733.588 X _{jan} 22.733	
	7.869 Achieved
February 23.827.866 X _{feb} 23.83	
March 23.758.088 X _{mar} 23.758	8.097 Achieved
April 25.514.849 X _{apr} 25.514	4.852 Achieved
May 26.860.533 X _{mei} 26.860	0.519 Not achieved
June 28.390.249 X _{juni} 28.390	0.251 Achieved
July 30.481.592 X _{juli} 30.482	1.700 Achieved
August 33.551.224 X _{agst} 33.552	1.236 Achieved
September 36.891.006 X _{sep} 36.892	1.018 Achieved
October 38.893.280 X _{okt} 38.893	3.298 Achieved
November 40.166.971 <i>X_{nov}</i> 40.166	6.981 Achieved
December 40.519.618 X _{des} 40.519	9.620 Achieved
TOTAL 371.558.864 371.59	9.032

Table 2. Optimal Solution for Availability of FFB

Based on Table 2, it can be concluded that the yield of FFB availability in May had a deviation of 14 kg. However, it still met the target set by the company, namely 371,599,032 kg of FFB from the initial target of 371,588,864 kg of FFB.

Moon	Target	Optimal Solution for CPKO Production		Status
NIOOTI	Taiget	Variable	Weight (Kg)	Status
January	4.517.877	X _{jan}	4.576.162	Achieved
February	4.838.711	X_{feb}	4.838.710	Not achieved
March	4.938.209	X_{mar}	4.938.209	Achieved
April	5.258.280	X_{apr}	5.258.793	Achieved
May	5.555.793	X _{mei}	5.555.794	Achieved
June	5.518.778	X _{juni}	5.588.659	Achieved
July	5.889.261	X_{juli}	6.319.134	Achieved
August	6.793.811	X_{agst}	6.793.813	Achieved
September	7.031.553	X_{sep}	7.031.813	Achieved
October	7.358.400	X_{okt}	7.601.192	Achieved
November	7.740.336	X_{nov}	8.082.369	Achieved
December	7.979.976	X _{des}	8.218.810	Achieved
TOTAL	73.420.955		74.803.459	

Table 3. Optimal Solutions for CPO Production

Based on Table 3, it can be concluded that in February, the CPO production target experienced a deviation of 1 kg. However, the company was able to meet the production target set based on market

demand by producing 74,803,459 kg of CPO, of which the target was73.420.955 in the period January – December 2022.

Moon	Target	Optimal Solution for CPKO Production		Status
Moon Tar	Target	Variable	Weight (kg)	Status
January	420.833	X _{2jan}	466.018	Achieved
February	436.667	X_{2feb}	538.538	Achieved
March	448.935	X_{2mar}	496.284	Achieved
April	464.546	X_{2apr}	505.342	Achieved
May	471.637	X _{2mei}	471.637	Achieved
June	461.350	X_{2juni}	589.006	Achieved
July	385.040	X_{2juli}	407.349	Achieved
August	439.592	X_{2agst}	602.750	Achieved
September	495.423	X_{2sep}	678.784	Achieved
October	596.469	X_{2okt}	707.508	Achieved
November	659.993	X_{2nov}	754.220	Achieved
December	656.946	X _{2des}	841.340	Achieved
TOTAL	5.937.531		7.058.777	

Table 4. Optimal Solutions for CPKO Production

Based on Table 4.it can be concluded that the company is able to meet the production targets set by the company based on market demand by producing as much CPKO7,058,777 kg of the initial target is5,937,531 kg in the period January – December 2022.

Table 5. Optimal Solution Availability of CPO and CPKO Processing Time

	Optimal So	lution (hours)
Moon	СРО	СРКО
January	379	227
February	403	238
March	416	238
April	457	255
May	479	257
June	473	284
July	549	305
August	603	336
September	635	369
October	648	389
November	669	402
December	675	405

Based on the optimal solution obtained using the LINDO software, the availability of CPO and CPKOprocessing times from January to December 2022 can be seen in Table 5.

Moon	Optimal Solution (Hours)	
WIOON	СРО	СРКО
January	20,91%	2,16%
February	26,38%	2,72%
March	17,84%	1,87%
April	19,44%	2,04%
May	18,86%	1,97%
June	17,55%	1,79%
July	16,04%	1,64%
August	16,23%	1,56%
September	21,32%	1,85%
October	22,49%	2,01%
November	24,36%	2,19%
December	27,56%	2,49%

Table 6. Optimal Solutions for CPO and CPKO Processing Targets

Based on the optimal solution obtained using *software*LINDO, CPO and CPKO processing targets based on yield can be seen in Table 6.

CONCLUSION

Based on the processing results obtained from PT. BarumunAgro Sentosa and projected the following data, the following conclusions were obtained:

- 1. The amount of FFB harvested at PT. BarumunAgro Sentosa in the period January December is 371,599,032kg from the initial target of 371,588,862kg. This means that the FFB harvest reaches the target set by the company.
- 2. The amount of CPO production at PT. BarumunAgro Sentosa in the period January December 2022 can be said to be optimal with a total production of 74,803,459 kg with an initial target of 73,420,955 kg.
- 3. The amount of CPKO production at PT. BarumunAgro Sentosa in the period January December 2022 can be said to be optimal with a total production of 7,058,777 kg with an initial target of 5,937,531 kg.

REFERENCES

Anis, M. (April 2007). *Optimisasi Perencanaan Produksi Dengan Metode Goal Programming*. Jurnal Ilmiah Teknik Industri Vol. 5 No.3.

Armindo, R. (2006). Penentuan Kapasitas Optimal Produksi CPO (Crude Palm Oil)

Dipabrik Kelapa Sawit PT. Andira Argo Dengan Menggunakan Goal Programming. ITB

Baroto, T. (2002). Perencanaan dan Pengendalian Produksi. Jakarta: Penerbit Ghalia Indonesia.

Bu'lolo, F. (2016). Operasi Riset Program Linier . Medan: USU-Press.

Ginting, R. (2007). Sistem Produksi. Yogyakarta: Graha Ilmu.

- Hajiyanto, T. 2014. Aplikasi Model Goal Programming Untuk Optimasi Produksi Aksesoris. Yogyakarta.
- JULIANA, A. (2017). OPTIMASI PERENCANAAN PRODUKSI CRUDE PALM OIL DENGAN METODE GOAL PROGRAMMING. Doctoral dissertation, Universitas Islam Negeri Sultan Syarif Kasim Riau.
- Lestari, W. A. (2021). Optimalisasi Produksi Crude Palm Oil (CPO) dan Palm Kernel menggunakan Metode Goal Programming (Studi Kasus: PKS PTPN 3 Kebun Torgamba). (Doctoral dissertation, Universitas Islam Negeri Sultan Syarif Kasim Riau).

Makridatis, dan Steven C. Metode dan AplikasiPeramalan. (Erlangga. Jakarta. 1999), hal. 67

Saputra, A. (2021). Perencanaan Produksi Crude Palm Oil (CPO) dengan Metode Goal Programming di PT. Beurata Subur Persada. *Jurnal Optimalisasi*, *7(2)*, *164-175.*, 170-171.

Siagian, P. PenelitianOperasionalTeori dan Praktek. (UI-PRESS, 2006).

Siswanto. (1993). Goal Programming dengan Menggunakan LINDO. Jakarta: Elex Media

Komputindo

Sukamto. (2008). 58 Kiat Meningkatkan Produktivitas dan Mutu Kelapa Sawit . Jakarta

(ID): Penebar Swadaya