Morphological Model and Visual Characteristic of Leaf, and Fruit of Citrus (Citrus sinensis)

Strayker Ali Muda, Benyamin Lakitan, Dora Fatma Nurshanti, Fitra Gustiar, Rofiqoh Purnama Ria, Fitra Fadhilah Rizar, Lya Nailatul Fadhilah

Abstract


Citrus is a well-known horticultural plant and consumed. Leaf and fruit are important citrus organs as a fruiting plant. This is confirmed by the vitamin, antioxidant, and other chemical content of these organs which are beneficial for the human health. Understanding the model of both organs will facilitate the potential content, functional capacity and plant yield in non-destructive way. The study was aimed to determine morphological model and visual characteristic of leaf, and fruit of citrus. The study was conducted by comparing direct measurement and finding the relationship with selected predictors using several regression types (i.e. linear, linear with zero intercept, exponential, logarithmic, polynomial, polynomial with zero intercept and power). The observational sample consisted of 100 leaves and 13 fruits of citrus randomly collected from healthy, normal and productive plants. The results showed that leaf length (LL) × leaf width (LW) was the most reliable predictor using the linear regression with zero intercept (R2= 0.991; y= 0.604x; RMSE= 0.34). Meanwhile, fruit circumference (FC) has been shown cannot be used as a predictor in determining fruit weight as indicated by low reliability. Based on the visual approach, ripe citrus is shown by the yellowish-green color of the peel along with the orange color of the pulp. Furthermore, in the middle of the ripened fruit pulp, there are also white stringy stuff. In conclusion, LL × LW with zero intercept regression is demonstrated the most reliability model for leaf area, while fruit circumference could not represent fruit weight.

Keywords


Estimation model, morphological characteristic of citrus, non-destructive estimation, zero-intercept regression, RMSE.

Full Text:

PDF

References


Abakpa, G. O., & Adenaike, O. (2021). Antioxidant compounds and health benefits of Citrus Fruits. European Journal of Nutrition & Food Safety, 13(2), 65-74.

Arendse, E., Fawole, O. A., Magwaza, L. S., & Opara, U. L. (2016). Non-destructive characterization and volume estimation of pomegranate fruit external and internal morphological fractions using X-ray computed tomography. Journal of Food Engineering, 186, 42-49.

Basak, J. K., Qasim, W., Okyere, F. G., Khan, F., Lee, Y. J., Park, J., & Kim, H. T. (2019). Regression analysis to estimate morphology parameters of pepper plant in a controlled greenhouse system. Journal of Biosystems Engineering, 44(2), 57-68.

Blanchard, M. G., Runkle, E. S., & Fisher, P. R. (2011). Modeling plant morphology and development of petunia in response to temperature and photosynthetic daily light integral. Scientia Horticulturae, 129(2), 313-320.

Boussakouran, A., Sakar, E. H., El Yamani, M., & Rharrabti, Y. (2019). Morphological traits associated with drought stress tolerance in six Moroccan durum wheat varieties released between 1984 and 2007. Journal of Crop Science and Biotechnology, 22, 345-353.

Budiarto, R., Poerwanto, R., Santosa, E., & Efendi, D. (2017). The potential of limau (Citrus amblycarpa Hassk. Ochese) as a functional food and ornamental mini tree based on metabolomics and morphological approaches. J. of Tropical Crop Science, 4(2), 49-57.

Budiarto, R., Poerwanto, R., Santosa, E., Efendi, D., & Agusta, A. (2021). Allometric model to estimate bifoliate leaf area and weight of kaffir lime (Citrus hystrix). Biodiversitas Journal of Biological Diversity, 22(5).

Chen, J., Yu, J., Ge, L., Wang, H., Berbel, A., Liu, Y., Chen, Y., Li., G., Tadege, M., Wen, J., Cosson, V., Mysore, K. S., Ratet, P., Madueno, F., Bai, G., Chen, R. (2010). Control of dissected leaf morphology by a Cys (2) His (2) zinc finger transcription factor in the model legume Medicago truncatula. Proceedings of the National Academy of Sciences, 107(23), 10754-10759.

Chi, P. T. L., Van Hung, P., Le Thanh, H., & Phi, N. T. L. (2020). Valorization of citrus leaves: Chemical composition, antioxidant and antibacterial activities of essential oils. Waste and Biomass Valorization, 11, 4849-4857.

Colonna, V., D’Agostino, N., Garrison, E., Albrechtsen, A., Meisner, J., Facchiano, A., Cardi, T., & Tripodi, P. (2019). Genomic diversity and novel genome-wide association with fruit morphology in Capsicum, from 746k polymorphic sites. Scientific reports, 9(1), 1-14.

Demirbas, A. (2020). Antimicrobial and catalytic activity of citrus fruits peels mediated nano-flowers. Journal of Biological Macromolecules, 20(2), 41-51.

Easlon, H. M., & Bloom, A. J. (2014). Easy Leaf Area: Automated digital image analysis for rapid and accurate measurement of leaf area. Applications in plant sciences, 2(7), 1400033.

Eisenhauer, J. G. (2003). Regression through the origin. Teaching statistics, 25(3), 76-80.

Farsi, M., Kalantar, M., Zeinalabedini, M., & Vazifeshenas, M. R. (2023). First assessment of Iranian pomegranate germplasm using targeted metabolites and morphological traits to develop the core collection and modeling of the current and future spatial distribution under climate change conditions. Plos one, 18(2), e0265977.

Gonzalez-Gonzalez, M. G., Blasco, J., Cubero, S., & Chueca, P. (2021). Automated Detection of Tetranychus urticae Koch in Citrus Leaves Based on Colour and VIS/NIR Hyperspectral Imaging. Agronomy, 11(5), 1002.

Hussain, S. Z., Naseer, B., Qadri, T., Fatima, T., & Bhat, T. A. (2021). Citrus fruits—Morphology, taxonomy, composition and health benefits. In Fruits Grown in Highland Regions of the Himalayas: Nutritional and Health Benefits (pp. 229-244). Cham: Springer International Publishing.

Khan, M. N., Hayat, F., Asim, M., Iqbal, S., Ashraf, T., & Asghar, S. (2020). Influence of citrus rootstocks on growth performance and leaf mineral nutrition of “Salustiana” sweet orange [Citrus sinensis (L.). obsek]. J. Pure Appl. Agric, 5, 2617-8680.

Kowalczyk-Juśko, A., Pochwatka, P., Zaborowicz, M., Czekała, W., Mazurkiewicz, J., Mazur, A., Janczak, D., Marczuk, A. & Dach, J. (2020). Energy value estimation of silages for substrate in biogas plants using an artificial neural network. Energy, 202, 117729.

Kumar, S., & Chong, S. 2018. Correlation analysis to identify the effective data in machine learning: prediction of depressive disorder and emotion states. Intl J Environ Res Public Health, 15 (12): 1-24. DOI: 10.3390/ijerph15122907.

Lakitan, B., Kartika, K., Widuri, L. I., Siaga, E., & Fadilah, L. N. (2021). Lesser-known ethnic leafy vegetables Talinum paniculatum grown at tropical ecosystem: Morphological traits and non-destructive estimation of total leaf area per branch. Biodiversitas Journal of Biological Diversity, 22(10).

Lakitan, B., Siaga, E., Fadilah, L. N., Nurshanti, D. F., Widuri, L. I., Gustiar, F., & Putri, H. H. (2023). Accurate and non-destructive estimation of palmate compound leaf area in cassava (Manihot esculenta Crantz) based on morphological traits of its selected lobes. Journal of Agricultural Technology, 19(1), 129-144.

Lakitan, B., Susilawati, S., Wijaya, A., Ria, R. P., & Putri, H. H. (2022). Non-destructive leaf area estimation in habanero chili (Capsicum chinense Jacq.). International Journal of Agricultural Technology, 18(2), 633-650.

Leite, M. L. D. M. V., Lucena, L. R. R. D., Cruz, M. G. D., Sá, E. H. D., & Simões, V. J. L. P. (2019). Leaf area estimate of Pennisetum glaucum by linear dimensions. Acta Scientiarum. Animal Sciences, 41.

Lo Piero, A. R. (2015). The state of the art in biosynthesis of anthocyanins and its regulation in pigmented sweet oranges [(Citrus sinensis) L. Osbeck]. Journal of agricultural and food chemistry, 63(16), 4031-4041.

Lu, X., Zhao, C., Shi, H., Liao, Y., Xu, F., Du, H., Xiao, H., & Zheng, J. (2021). Nutrients and bioactives in citrus fruits: Different citrus varieties, fruit parts, and growth stages. Critical Reviews in Food Science and Nutrition, 1-24.

Mahanti, N. K., Konga, U., Chakraborty, S. K., & Babu, V. B. (2020). Non-destructive estimation of spinach leaf area: image processing and artificial neural network based approach. Current Journal of Applied Science and Technology, 39(16), 146-153.

Malik, S. K., Rohini, M. R., Kumar, S., Choudhary, R., Pal, D., & Chaudhury, R. (2012). Assessment of genetic diversity in Sweet Orange [Citrus sinensis (L.) Osbeck] cultivars of India using morphological and RAPD markers. Agricultural Research, 1(4), 317-324.

Moberly, J. G., Bernards, M. T., & Waynant, K. V. (2018). Key features and updates for origin 2018. Journal of cheminformatics, 10(1), 1-2.

Multari, S., Licciardello, C., Caruso, M., Anesi, A., & Martens, S. (2021). Flavedo and albedo of five citrus fruits from Southern Italy: physicochemical characteristics and enzyme-assisted extraction of phenolic compounds. Journal of Food Measurement and Characterization, 15, 1754-1762.

Nurshanti, D. F., Lakitan, B., Hasmeda, M., Ferlinahayati, F., Negara, Z. P., Susilawati, S., & Budianta, D. (2022). Planting Materials, Shading Effects, and Non-Destructive Estimation of Compound Leaf Area in Konjac (Amorphophallus Muelleri). Trends in Sciences, 19(9), 3973-3973.

Nyalala, I., Okinda, C., Nyalala, L., Makange, N., Chao, Q., Chao, L., Yousaf K., & Chen, K. (2019). Tomato volume and mass estimation using computer vision and machine learning algorithms: Cherry tomato model. Journal of Food Engineering, 263, 288-298.

Othman, H. I. A., Alkatib, H. H., Zaid, A., Sasidharan, S., Rahiman, S. S. F., Lee, T. P., Dimitrovski, G., Althakafy, J. T., & Wong, Y. F. (2023). Phytochemical Composition, Antioxidant and Antiproliferative Activities of Citrus hystrix, Citrus limon, Citrus pyriformis, and Citrus microcarpa Leaf Essential Oils against Human Cervical Cancer Cell Line. Plants, 12(1), 134.

Ponce, J. M., Aquino, A., & Andujar, J. M. (2019). Olive-fruit variety classification by means of image processing and convolutional neural networks. IEEE Access, 7, 147629-147641.

Ponce, J. M., Aquino, A., Millan, B., & Andujar, J. M. (2019). Automatic counting and individual size and mass estimation of olive-fruits through computer vision techniques. IEEE Access, 7, 59451-59465.

Price, C. A., & Enquist, B. J. (2006). Scaling of mass and morphology in plants with minimal branching: an extension of the WBE model. Functional Ecology, 11-20.

Ramírez‐Valiente, J. A., López, R., Hipp, A. L., & Aranda, I. (2020). Correlated evolution of morphology, gas exchange, growth rates and hydraulics as a response to precipitation and temperature regimes in oaks (Quercus). New Phytologist, 227(3), 794-809.

Romero, P., & Lafuente, M. T. (2020). Abscisic acid deficiency alters epicuticular wax metabolism and morphology that leads to increased cuticle permeability during sweet orange (Citrus sinensis) fruit ripening. Frontiers in Plant Science, 11, 594184.

Rowland, S. D., Zumstein, K., Nakayama, H., Cheng, Z., Flores, A. M., Chitwood, D. H., Maloof, J. N., & Sinha, N. R. (2020). Leaf shape is a predictor of fruit quality and cultivar performance in tomato. new phytologist, 226(3), 851-865.

Salmanizadeh, F., Nassiri, S. M., Jafari, A., & Bagheri, M. H. (2015). Volume estimation of two local pomegranate fruit (Punica granatum L.) cultivars and their components using non-destructive X-ray computed tomography technique. International Journal of Food Properties, 18(2), 439-455.

Schmidt, A. F., & Finan, C. (2018). Linear regression and the normality assumption. Journal of clinical epidemiology, 98, 146-151.

Vanderlei, R. S., Silva, J. V., & Moura, F. D. B. P. (2019). Biometry and non-destructive allometric model for estimating Babassu (Attalea speciosa) fruit volume and densities. Revista Ouricuri, 9(2), 001-010.

Verma, K. K., Verma, C. L., & Singh, M. (2021). Non-destructive allometric models for leaf area prediction of Jatropha curcas L. International Journal of Agricultural Science and Food Technology, 7(3), 341-346.

Weraduwage, S.M., Chen, J., Anozie, F.C., Moreles, A., Weise, S,E., & Sharkey, T.D., (2015). The relationship between leaf area growth and biomass accumulation in Arabidopsis thaliana. Front Plant Sci, 6 (167): 1-21. DOI: 10.3389/fpls.2015.00167.

Widuri, L. I., Lakitan, B., Hasmeda, M., Sodikin, E., Wijaya, A., Meihana, M., Kartika, K., & Siaga, E. (2017). Relative leaf expansion rate and other leaf-related indicators for detection of drought stress in chili pepper ('Capsicum annuum'L.). Australian journal of crop science, 11(12), 1617-1625.

Wu, L. M., Wang, C., He, L. G., Wang, Z. J., Tong, Z., Song, F., Tu, J. F., Qiu W. M., Liu, J. H., Jiang, Y. C. & Peng, S. A. (2020). Transcriptome analysis unravels metabolic and molecular pathways related to fruit sac granulation in a late-ripening navel orange (Citrus sinensis Osbeck). Plants, 9(1), 95.

Yildiz, F., Özdemir, A. T., & Uluisik, S. (2018, September). Custom design fruit quality evaluation system with non-destructive testing (NDT) techniques. In 2018 International Conference on Artificial Intelligence and Data Processing (IDAP) (pp. 1-5). IEEE.

Zhang, H., Chen, M., Wen, H., Wang, Z., Chen, J., Fang, L., Zhang, H., Xie, Z., Jiang, D., Cheng Y., & Xu, J. (2020). Transcriptomic and metabolomic analyses provide insight into the volatile compounds of citrus leaves and flowers. BMC plant biology, 20, 1-14.

Zhou, L., Reyes, M. E. Q., & Paull, R. E. (2020). Papaya (Carica papaya L.) Leaf Area Estimation and Single-leaf Net Photosynthetic CO2 Assimilation Rate Following Leaf Defoliation and Fruit Thinning. HortScience, 55(11), 1861-1864.




DOI: https://doi.org/10.30596/agrium.v26i2.13743

Refbacks

  • There are currently no refbacks.