Lunar Position Calculation Algorithm With Truncated ELP/MPP02 Series

Yusrifal Fais Abdillah, Muhammad Muadz Dzulikrom

Abstract


The truncated ELP/MPP02 series is a series of lunar position calculations based on the ELP/MPP02 theory developed by Chapront and Francou in 2002. This series reduces the lunar correction data, reducing the number of corrections from 35,901 to 253 data points, which are used to calculate the ecliptic longitude, ecliptic latitude and distance of the Moon from the Earth. The conclusions of this research are as follows: First, the calculation of lunar coordinates with the truncated ELP/MPP02 series involves the calculation of ecliptic longitude (L), ecliptic latitude (B), and the distance of the Moon from Earth (R) using the provided periodic terms, and then correcting for Δλ and Δψ to calculate the apparent position of the Moon. Secondly, the truncated ELP/MPP02 series has a maximum error of 5'' for L, 1.26'' for B and 2.43 km for R in the time range 0 AD to 3000 AD. In the case of L, B and R, these errors do not exceed 5', 1' and 14 km respectively when calculations are made between 3000 BC and 1000 BC. For lunar and solar eclipses, the series shows an accuracy of 5.8 seconds for lunar eclipses in the time range 2000 AD to 2050 AD, and 4 seconds for solar eclipses.


Full Text:

PDF

References


Bureau des longitudes, “Activités,” Bureau des longitudes, 2023. https://site.bdlg.fr/activites (accessed Sep. 10, 2023).

M. Chapront-Touze and J. Chapront, “The Lunar Ephemeris ELP 2000,” Astron. Astrophys., vol. 124, pp. 50–62, 1983.

M. Chapront-Touze and J. Chapront, “ELP 2000-85: A Semi-Analytical Lunar Ephemeris Adequate for Historical Times,” Astron. Astrophys., vol. 190, pp. 342–352, 1988.

J. Chapront, G. Francou, and M. Chapront-Touze, “Notes on The Program Janus,” Astron. Astrophys., vol. 190, p. 342, 1998.

J. Chapront and G. Francou, “The Lunar Theory ELP Revisited. Introduction of New Planetary Perturbations,” Astron. Astrophys., vol. 404, pp. 735–742, 2003, doi: https://doi.org/10.1051/0004-6361:20030529.

X. Moisson and P. Bretagnon, “Analytical Planetary Solution VSOP2000,” Celest. Mech. Dyn. Astron., vol. 80, pp. 205–213, 2001, doi: https://doi.org/10.1023/A:1012279014297.

S. E. Urban and P. K. Seidelmann, Explanatory Supplement to the Astronomical Almanac. California: University Science Books, 2012.

M. Chapront-Touze and J. Chapront, Lunar Tables and Programs from 4000 B.C. to A.D. 8000. Virginia: Willmann-Bell, Inc, 1991.

G. Petit and B. Luzum, “The 2010 Reference Edition of the IERS Conventions,” in Reference Frames for Applications in Geosciences, 2013, pp. 57–61, doi: https://doi.org/10.1007/978-3-642-32998-2_10.

N. Capitaine, P. Wallace, and J. Chapront, “Expressions for IAU 2000 Precession Quantities,” Astron. Astrophys., vol. 412, pp. 567–586, 2003, doi: https://doi.org/10.1051/0004-6361:20031539.

J. Meeus, “Astronomical algorithms (2nd).” Willman-Bell. Inc., Virginia, 1998.

IAA RAS, “Online Ephemeris Service • IAA RAS,” Institute of Applied Astronomy of the Russian Academy of Sciences, 2023. https://iaaras.ru/en/dept/ephemeris/online/ (accessed Sep. 11, 2023).

R. S. Park, W. M. Folkner, J. G. Williams, and D. H. Boggs, “The JPL planetary and lunar ephemerides DE440 and DE441,” Astron. J., vol. 161, p. 105, 2021, doi: https://doi.org/10.3847/1538-3881/abd414.

X. X. Newhall, E. M. Standish, and J. G. Williams, “DE 102: A Numerically Integrated Ephemeris of The Moon and Planets Spanning Forty-Four Centuries,” Astron. Astrophys., vol. 125, pp. 150–167, 1983.




DOI: https://doi.org/10.30596/jam.v10i1.16616

Refbacks

  • There are currently no refbacks.