Internet of Things and Artificial Neural Network Application for Optimizing Spirulina Cultivation with Palm Oil Mill Effluent
Abstract
Keywords
References
Azimatun Nur, M. M., Nurlatiffah, S. N., & Lastuti, N. D. R. (2020). Spirulina platensis production using digestate from anaerobic digestion of palm oil mill effluent as low-cost nutrient medium. Bioresource Technology Reports, 11, 100466.
Barkia, I., Saari, N., & Manning, S. R. (2019). Microalgae for high-value products towards human health and nutrition. Marine Drugs, 17, 1-29.
Dhal, S. B., Jungbluth, K., Lin, R., Sabahi, S. P., Bagavathiannan, M., Braga-Neto, U., & Kalafatis, S. (2022). A machine-learning-based IoT system for optimizing nutrient supply in commercial aquaponic operations. Sensors, 22(9), 3510. https://doi.org/10.3390/s22093510
Guldhe, A., Kumari, S., Ramanna, L., Ramsundar, P., Singh, P., Rawat, I., & Bux, F. (2019). Prospects, recent advancements and challenges of different wastewater streams for microalgal cultivation. Journal of Environmental Management, 203, 299-315.
Hadiyanto, H., & Nur, M. M. A. (2014). Potential of palm oil mill effluent (POME) as medium growth of Chlorella sp. for bioenergy production. International Journal of Environment and Bioenergy, 9(1), 41-45.
Haryanto, A., Hasanudin, U., Sahari, B., & Sugiarto, R. (2019). Methane emission reduction in palm oil mill through co-composting empty fruit bunch and palm oil mill effluent. Procedia Environmental Science, Engineering and Management, 6(3), 431-441.
Khoo, K. S., Chew, K. W., Yew, G. Y., Leong, W. H., Chai, Y. H., Show, P. L., & Chen, W. H. (2019). Recent advances in downstream processing of microalgae lipid recovery for biofuel production. Bioresource Technology, 304, 122996.
Khanza, S. (2019). Pertumbuhan mikroalga Nannochloropsis sp., Tetraselmis sp., dan Dunaliella sp. pada media air limpasan budidaya udang vaname (Litopenaeus vannamei). (Unpublished undergraduate thesis). Universitas Lampung, Indonesia.
Kristianto, A., Chai, C. A., Chainatra, D., Onggie, K., & Alexander, W. J. (2023). Penerapan smart greenhouse untuk optimalisasi hasil pertanian hidroponik dengan implementasi IoT dan machine learning di Syifa Hidroponik. DST, 3(2), 225-233.
Lowe, M., Qin, R., & Mao, X. (2022). A review on machine learning, artificial intelligence, and smart technology in water treatment and monitoring. Water, 14(9), 1384.
Martínez, C., Mairet, F., & Bernard, O. (2018). Theory of turbid microalgae cultures. Journal of Theoretical Biology, 456, 190-200.
Nur, M. M. A., Swaminathan, M. K., Boelen, P., & Buma, A. G. J. (2019). Sulfated exopolysaccharide production and nutrient removal by the marine diatom Phaeodactylum tricornutum growing on palm oil mill effluent. Journal of Applied Phycology, 31(5), 2335-2348.
Podder, A. K., et al. (2021). IoT based smart agrotech system for verification of urban farming parameters. Microprocessors and Microsystems, 82, 104025. https://doi.org/10.1016/j.micpro.2021.104025
Raju, K. R. S. R., & Varma, G. H. K. (2017). Knowledge-based real-time monitoring system for aquaculture using IoT. In 2017 IEEE 7th International Advance Computing Conference (IACC) (pp. 318-321). https://doi.org/10.1109/IACC.2017.0075
Soni, R. A., Sudhakar, K., & Rana, R. S. (2017). Spirulina–From growth to nutritional product: A review. Trends in Food Science & Technology, 69, 157-171.
Teja, K. B. R., Monika, M., Chandravathi, C., & Kodali, P. (2020). Smart monitoring system for pond management and automation in aquaculture. In 2020 International Conference on Communication and Signal Processing (ICCSP) (pp. 204-208). https://doi.org/10.1109/ICCSP48568.2020.9182187
Tim Riset PASPI. (2018). Devisa sawit dan neraca perdagangan non migas Indonesia. Monitor, 4(8), 1105-1110.
Toro, V., Siquier-Coll, J., Bartolomé, I., Robles-Gil, M. C., Rodrigo, J., & Maynar-Mariño, M. (2020). Effects of Tetraselmis chuii microalgae supplementation on ergospirometric, haematological and biochemical parameters in amateur soccer players. International Journal of Environmental Research and Public Health, 17(17), 6885. https://doi.org/10.3390/ijerph17186885
Ula, M., Muliani, M., & Aidilof, H. A. K. (2023). Optimization of water quality in shrimp-shallot aquaponic systems: A machine learning-integrated IoT approach. International Journal of Intelligent Systems and Applications in Engineering, 12(1), 480-491.
DOI: https://doi.org/10.30596/jcositte.v6i1.22389
Refbacks
- There are currently no refbacks.