Internet of Things and Artificial Neural Network Application for Optimizing Spirulina Cultivation with Palm Oil Mill Effluent

Munirul Ula, Fajriana Fajriana, Julia Ulfah

Abstract


This study aims to optimize algae biomass production by utilizing Palm Oil Mill Effluent (POME) as a nutrient source, employing Internet of Things (IoT) technology and Artificial Neural Networks (ANN) for predictive modeling and system control. POME, an organic waste from the palm oil industry, was used as an organic liquid fertilizer to enhance the efficiency and sustainability of algae cultivation. The system was designed to monitor and control key environmental parameters such as pH, temperature, salinity, and dissolved oxygen in real-time during a one-month trial in July 2024. ANN-based models were used to predict and adjust environmental conditions, leading to significant improvements in algae growth and resource efficiency. The results indicate that POME can serve as an effective and eco-friendly nutrient source, contributing to both reduced industrial waste and sustainable biomass production. This integrated approach supports circular economy principles and sustainability goals, with potential applications in bioresource production and waste management. Future research will focus on large-scale system testing, optimization for various algae species, and long-term sustainability assessment.

Keywords


Algae Biomass Production; Palm Oil Mill Effluent (POME); Artificial Neural Networks (ANN); Internet of Things (IoT); Sustainable Algae Cultivation

References


Azimatun Nur, M. M., Nurlatiffah, S. N., & Lastuti, N. D. R. (2020). Spirulina platensis production using digestate from anaerobic digestion of palm oil mill effluent as low-cost nutrient medium. Bioresource Technology Reports, 11, 100466.

Barkia, I., Saari, N., & Manning, S. R. (2019). Microalgae for high-value products towards human health and nutrition. Marine Drugs, 17, 1-29.

Dhal, S. B., Jungbluth, K., Lin, R., Sabahi, S. P., Bagavathiannan, M., Braga-Neto, U., & Kalafatis, S. (2022). A machine-learning-based IoT system for optimizing nutrient supply in commercial aquaponic operations. Sensors, 22(9), 3510. https://doi.org/10.3390/s22093510

Guldhe, A., Kumari, S., Ramanna, L., Ramsundar, P., Singh, P., Rawat, I., & Bux, F. (2019). Prospects, recent advancements and challenges of different wastewater streams for microalgal cultivation. Journal of Environmental Management, 203, 299-315.

Hadiyanto, H., & Nur, M. M. A. (2014). Potential of palm oil mill effluent (POME) as medium growth of Chlorella sp. for bioenergy production. International Journal of Environment and Bioenergy, 9(1), 41-45.

Haryanto, A., Hasanudin, U., Sahari, B., & Sugiarto, R. (2019). Methane emission reduction in palm oil mill through co-composting empty fruit bunch and palm oil mill effluent. Procedia Environmental Science, Engineering and Management, 6(3), 431-441.

Khoo, K. S., Chew, K. W., Yew, G. Y., Leong, W. H., Chai, Y. H., Show, P. L., & Chen, W. H. (2019). Recent advances in downstream processing of microalgae lipid recovery for biofuel production. Bioresource Technology, 304, 122996.

Khanza, S. (2019). Pertumbuhan mikroalga Nannochloropsis sp., Tetraselmis sp., dan Dunaliella sp. pada media air limpasan budidaya udang vaname (Litopenaeus vannamei). (Unpublished undergraduate thesis). Universitas Lampung, Indonesia.

Kristianto, A., Chai, C. A., Chainatra, D., Onggie, K., & Alexander, W. J. (2023). Penerapan smart greenhouse untuk optimalisasi hasil pertanian hidroponik dengan implementasi IoT dan machine learning di Syifa Hidroponik. DST, 3(2), 225-233.

Lowe, M., Qin, R., & Mao, X. (2022). A review on machine learning, artificial intelligence, and smart technology in water treatment and monitoring. Water, 14(9), 1384.

Martínez, C., Mairet, F., & Bernard, O. (2018). Theory of turbid microalgae cultures. Journal of Theoretical Biology, 456, 190-200.

Nur, M. M. A., Swaminathan, M. K., Boelen, P., & Buma, A. G. J. (2019). Sulfated exopolysaccharide production and nutrient removal by the marine diatom Phaeodactylum tricornutum growing on palm oil mill effluent. Journal of Applied Phycology, 31(5), 2335-2348.

Podder, A. K., et al. (2021). IoT based smart agrotech system for verification of urban farming parameters. Microprocessors and Microsystems, 82, 104025. https://doi.org/10.1016/j.micpro.2021.104025

Raju, K. R. S. R., & Varma, G. H. K. (2017). Knowledge-based real-time monitoring system for aquaculture using IoT. In 2017 IEEE 7th International Advance Computing Conference (IACC) (pp. 318-321). https://doi.org/10.1109/IACC.2017.0075

Soni, R. A., Sudhakar, K., & Rana, R. S. (2017). Spirulina–From growth to nutritional product: A review. Trends in Food Science & Technology, 69, 157-171.

Teja, K. B. R., Monika, M., Chandravathi, C., & Kodali, P. (2020). Smart monitoring system for pond management and automation in aquaculture. In 2020 International Conference on Communication and Signal Processing (ICCSP) (pp. 204-208). https://doi.org/10.1109/ICCSP48568.2020.9182187

Tim Riset PASPI. (2018). Devisa sawit dan neraca perdagangan non migas Indonesia. Monitor, 4(8), 1105-1110.

Toro, V., Siquier-Coll, J., Bartolomé, I., Robles-Gil, M. C., Rodrigo, J., & Maynar-Mariño, M. (2020). Effects of Tetraselmis chuii microalgae supplementation on ergospirometric, haematological and biochemical parameters in amateur soccer players. International Journal of Environmental Research and Public Health, 17(17), 6885. https://doi.org/10.3390/ijerph17186885

Ula, M., Muliani, M., & Aidilof, H. A. K. (2023). Optimization of water quality in shrimp-shallot aquaponic systems: A machine learning-integrated IoT approach. International Journal of Intelligent Systems and Applications in Engineering, 12(1), 480-491.




DOI: https://doi.org/10.30596/jcositte.v6i1.22389

Refbacks

  • There are currently no refbacks.