Implementation of Content-Based Filtering Method for Data Recommendation Of Computational Thinking Students-Based Informatics Subject
Abstract
Keywords
References
Adawiyyah, A., & Nuddin, S. R. (2021). Penerapan Algoritma Content Based Filtering dan Frequent Pattern Growth pada Sistem Rekomendasi Program Mahasiswa Wirausaha di Universitas Negeri Surabaya. Journal of Informatics and Computer Science (JINACS), 3(02), 123–130. https://doi.org/10.26740/jinacs.v3n02.p123-130
Amelia, T., . P., & Pambudi, A. (2023). Rekomendasi Jurusan Kuliah Berdasarkan Minat dan Kemampuan Menggunakan Metode Content Based Filtering. Technologia : Jurnal Ilmiah, 14(3), 245. https://doi.org/10.31602/tji.v14i3.11336
Anis Budiono, & Sri Eniyati. (2023). Sistem Rekomendasi Dosen Pembimbing Tugas Akhir Menggunakan Content Based Filtering. Jurnal Elektronika Dan Komputer, 16(1), 64–71.
Cacho, R. M. (2014). TPCK assessment of pre-service teachers toward enhancing teacher educators’ modeling. Asian Journal of Education and E-Learning, 2(5), 349–356.
Fitri, Z., & Utaminingsih, E. (2021). Penerapan Metode Computational Thinking Pada Kurikulum Aceh Untuk Mencapai Kognitif. Jurnal MathEducation Nusantara, 4(1), 60–73. https://jurnal.pascaumnaw.ac.id/index.php/JMN
Halimah Nurul, Hadiyanto, & Rusdinal. (2023). Analisis Pembelajaran Berdiferensiasi Sebagai BentukImplementasi Kebijakan Kurikulum Merdeka. Pendas : Jurnal Ilmiah Pendidikan Dasar, 8(1), 5019–5033.
Han, J. (2023). A Collaborative Filtering Recommendation Algorithm Model Based on User Feature Transfer. More than One Article, 18(November 2023), 164–187. https://doi.org/https://doi.org/10.3991/ijet.v18i22.43987
Hidayat, T., Purnomo, S., Hadi, S., & Setuju. (2022). ANALISIS MODEL PEMBELAJARAN UNTUK MENINGKATKAN HASIL BELAJAR MERDEKA BELAJAR SISWA SMK. 003(xx), 1–16.
Huang, C., Chen, R., & Lin, L. (2022). English Teaching Resource Recommendation Algorithm Based on Collaborative Filtering Technology. 4, 34–40. https://doi.org/10.23977/aduhe.2022.040606
Javed, U., Shaukat, K., Hameed, I. A., Iqbal, F., Alam, T. M., & Luo, S. (2021). A Review of Content-Based and Context-Based Recommendation Systems. International Journal of Emerging Technologies in Learning, 16(3), 274–306. https://doi.org/10.3991/ijet.v16i03.18851
Kuo, W. C., & Hsu, T. C. (2020). Learning Computational Thinking Without a Computer: How Computational Participation Happens in a Computational Thinking Board Game. Asia-Pacific Education Researcher, 29(1), 67–83. https://doi.org/10.1007/S40299-019-00479-9/METRICS
Mondi, R. H., Wijayanto, A., & Winarno. (2019). Recommendation System with Content-based Filtering Method for Culinary Tourism in Mangan Application. ITSMART: Jurnal Ilmiah Teknologi Dan Informasi, 8(2), 65–72.
Nafaridah, T., Ahmad, A., Maulidia, L., Ratumbuysang, M., & Kesumasari, E. M. (2023). Analisis Kegiatan P5 sebagai Penerapan Pembelajaran Berdiferensiasi pada Kurikulum Merdeka Era Digital di SMA Negeri 2 Banjarmasin. Seminar Nasional PROSPEK II, Prospek Ii, 84–97.
Pratama, D. R., Nugraha, G. S., & Dwiyansaputra, R. (2019). SISTEM REKOMENDASI TOPIK PENELITIAN MENGGUNAKAN METODE CONTENT-BASED FILTERING ( STUDI KASUS PROGRAM STUDI TEKNIK INFORMATIKA ) RESEARCH TOPIC RECOMMENDATION SYSTEM USING CONTENT-BASED FILTERING METHOD ( CASE STUDY OF INFORMATICS ENGINEERING STUDY PROGRAM. x(36), 1–9.
Pulungtana, J. R., & Dwikurnaningsih, Y. (2020). Evaluasi Kinerja Mengajar Guru IPS Dalam Mengimplementasikan TPACK. Jurnal Ilmu Sosial Dan Humaniora, 9(1), 146–155. https://doi.org/10.23887/JISH-UNDIKSHA.V9I1.24672
Safriana, Fitri, Z., & Ginting, F. W. (2023). Implementation of Fuzzy Tsukamoto Method in Analyze Science Teacher ’ s Technological Pedagogical Content Knowledge. 11(2), 276–287.
Tang, X., Yin, Y., Lin, Q., Hadad, R., & Zhai, X. (2020). Assessing computational thinking: A systematic review of empirical studies. Computers and Education, 148, 103798. https://doi.org/10.1016/j.compedu.2019.103798
Wiryasaputra, R., Salomo, A., Sevani, N., & Seruni. (2022). Peningkatan Pola Berpikir Komputasi pada Siswa/i SMAK MATER DEI Melalui Bahasa Pemrograman Java dan Python. Servirisma, 2(2), 127–145. https://doi.org/10.21460/servirisma.2022.22.28
DOI: https://doi.org/10.30596/jcositte.v6i1.22394
Refbacks
- There are currently no refbacks.