Implementation of Content-Based Filtering Method for Data Recommendation Of Computational Thinking Students-Based Informatics Subject

Zahratul Fitri, Safriana Safriana, Nurdin Nurdin

Abstract


Data recommendations are built by displaying the results of student subject recommendations based on students' computational thinking value. The process carried out is tokenization, stopword removal, stemming, and weighting. The extraction results were then compared using the cosine similarity approach. The greater the value of cosine similarity produced, the more similar the two data are, so that the material recommendations will be based on the smallest cosine similarity value between the extraction of student recommendation data. From the 535 data, several student data are included in 3 levels of material, namely recommendation 0 (low), recommendation 1 (medium), and recommendation 2 (high). Recommendation data was obtained from the results of students' computational thinking calculations by looking at decomposition value, pattern value, abstraction value, and algorithm value.

Keywords


Data Recommendation; Content-Based Filtering; Computational Thinking; Informatics Subject

References


Adawiyyah, A., & Nuddin, S. R. (2021). Penerapan Algoritma Content Based Filtering dan Frequent Pattern Growth pada Sistem Rekomendasi Program Mahasiswa Wirausaha di Universitas Negeri Surabaya. Journal of Informatics and Computer Science (JINACS), 3(02), 123–130. https://doi.org/10.26740/jinacs.v3n02.p123-130

Amelia, T., . P., & Pambudi, A. (2023). Rekomendasi Jurusan Kuliah Berdasarkan Minat dan Kemampuan Menggunakan Metode Content Based Filtering. Technologia : Jurnal Ilmiah, 14(3), 245. https://doi.org/10.31602/tji.v14i3.11336

Anis Budiono, & Sri Eniyati. (2023). Sistem Rekomendasi Dosen Pembimbing Tugas Akhir Menggunakan Content Based Filtering. Jurnal Elektronika Dan Komputer, 16(1), 64–71.

Cacho, R. M. (2014). TPCK assessment of pre-service teachers toward enhancing teacher educators’ modeling. Asian Journal of Education and E-Learning, 2(5), 349–356.

Fitri, Z., & Utaminingsih, E. (2021). Penerapan Metode Computational Thinking Pada Kurikulum Aceh Untuk Mencapai Kognitif. Jurnal MathEducation Nusantara, 4(1), 60–73. https://jurnal.pascaumnaw.ac.id/index.php/JMN

Halimah Nurul, Hadiyanto, & Rusdinal. (2023). Analisis Pembelajaran Berdiferensiasi Sebagai BentukImplementasi Kebijakan Kurikulum Merdeka. Pendas : Jurnal Ilmiah Pendidikan Dasar, 8(1), 5019–5033.

Han, J. (2023). A Collaborative Filtering Recommendation Algorithm Model Based on User Feature Transfer. More than One Article, 18(November 2023), 164–187. https://doi.org/https://doi.org/10.3991/ijet.v18i22.43987

Hidayat, T., Purnomo, S., Hadi, S., & Setuju. (2022). ANALISIS MODEL PEMBELAJARAN UNTUK MENINGKATKAN HASIL BELAJAR MERDEKA BELAJAR SISWA SMK. 003(xx), 1–16.

Huang, C., Chen, R., & Lin, L. (2022). English Teaching Resource Recommendation Algorithm Based on Collaborative Filtering Technology. 4, 34–40. https://doi.org/10.23977/aduhe.2022.040606

Javed, U., Shaukat, K., Hameed, I. A., Iqbal, F., Alam, T. M., & Luo, S. (2021). A Review of Content-Based and Context-Based Recommendation Systems. International Journal of Emerging Technologies in Learning, 16(3), 274–306. https://doi.org/10.3991/ijet.v16i03.18851

Kuo, W. C., & Hsu, T. C. (2020). Learning Computational Thinking Without a Computer: How Computational Participation Happens in a Computational Thinking Board Game. Asia-Pacific Education Researcher, 29(1), 67–83. https://doi.org/10.1007/S40299-019-00479-9/METRICS

Mondi, R. H., Wijayanto, A., & Winarno. (2019). Recommendation System with Content-based Filtering Method for Culinary Tourism in Mangan Application. ITSMART: Jurnal Ilmiah Teknologi Dan Informasi, 8(2), 65–72.

Nafaridah, T., Ahmad, A., Maulidia, L., Ratumbuysang, M., & Kesumasari, E. M. (2023). Analisis Kegiatan P5 sebagai Penerapan Pembelajaran Berdiferensiasi pada Kurikulum Merdeka Era Digital di SMA Negeri 2 Banjarmasin. Seminar Nasional PROSPEK II, Prospek Ii, 84–97.

Pratama, D. R., Nugraha, G. S., & Dwiyansaputra, R. (2019). SISTEM REKOMENDASI TOPIK PENELITIAN MENGGUNAKAN METODE CONTENT-BASED FILTERING ( STUDI KASUS PROGRAM STUDI TEKNIK INFORMATIKA ) RESEARCH TOPIC RECOMMENDATION SYSTEM USING CONTENT-BASED FILTERING METHOD ( CASE STUDY OF INFORMATICS ENGINEERING STUDY PROGRAM. x(36), 1–9.

Pulungtana, J. R., & Dwikurnaningsih, Y. (2020). Evaluasi Kinerja Mengajar Guru IPS Dalam Mengimplementasikan TPACK. Jurnal Ilmu Sosial Dan Humaniora, 9(1), 146–155. https://doi.org/10.23887/JISH-UNDIKSHA.V9I1.24672

Safriana, Fitri, Z., & Ginting, F. W. (2023). Implementation of Fuzzy Tsukamoto Method in Analyze Science Teacher ’ s Technological Pedagogical Content Knowledge. 11(2), 276–287.

Tang, X., Yin, Y., Lin, Q., Hadad, R., & Zhai, X. (2020). Assessing computational thinking: A systematic review of empirical studies. Computers and Education, 148, 103798. https://doi.org/10.1016/j.compedu.2019.103798

Wiryasaputra, R., Salomo, A., Sevani, N., & Seruni. (2022). Peningkatan Pola Berpikir Komputasi pada Siswa/i SMAK MATER DEI Melalui Bahasa Pemrograman Java dan Python. Servirisma, 2(2), 127–145. https://doi.org/10.21460/servirisma.2022.22.28




DOI: https://doi.org/10.30596/jcositte.v6i1.22394

Refbacks

  • There are currently no refbacks.