Analisis Kinerja Turbin Hidrokinetik Dengan Selubung Diffuser Pada Kondisi Yaw Misalignment Berdasarkan Variasi Kecepatan Aliran Air

Nasrullah ., Nofriadi ., Nasirwan ., Desmarita Leni, Dytchia Septi Kesuma

Abstract


Yaw Misalignment condition has detrimental effects on the performance and efficiency of hydrokinetic turbines. This phenomenon occurs when the direction of water flow hitting the turbine blades is not aligned with the turbine's movement direction. In this research, an analysis is conducted on the performance of a hydrokinetic turbine equipped with a diffuser shroud under Yaw Misalignment conditions, considering variations in water flow velocity. The dataset used in this study consists of water flow velocity data, yaw angles, tip speed ratio (TSR), and power coefficient (Cp) of a 19.8 cm diameter horizontal-axis hydrokinetic turbine operating under Yaw Misalignment conditions. Experiments were conducted at three water flow velocity levels: 0.7 m/s, 0.9 m/s, and 1.1 m/s. Additionally, yaw angle variations were applied ranging from 0° to 25° at 5° intervals. Data analysis involved the application of Pearson correlation analysis and descriptive statistical analysis to identify the maximum Cp values. The analysis results indicate that the highest maximum Cp value is 0.711, with a tip speed ratio (TSR) of 4.33, achieved at a yaw angle of 0° and a water flow velocity of 0.9 m/s. This indicates that under these conditions, the turbine reaches its peak performance in converting water flow energy into mechanical power.


Keywords


Hydrokinetic Turbine, Diffuser, Yaw Misalignment, Water Flow

References


T. Jurnal, S. Dan, T. Antomo, I. M. Kamiana, and D. Anung, “Analisis pengembangan hidrokinetik turbin gorlov akibat penambahan luas bidang tangkap,” Tek. J. Sains Dan Teknol., vol. 16, no. 02, pp. 159–170, 2020.

F. D. Putra, N. Effiandi, and D. Leni, “Pengoperasian dan Perawatan PLTMH pada Pembangkit Listrik Mikro Hidro (PLTMH) di Sungai Batang Geringging Kota Padang,” J. Tek. Mesin, vol. 10, no. 2, pp. 25–30, 2019, doi: 10.30630/jtm.10.2.183.

V. Wuwung, P. Wandani, and C. Bintoro, “Aplikasi Cfd Dalam Penentuan Performa Mesin Turbofan Model Cfm56-5B Yang Mengalami Cacat Pada Kipas Untuk Keputusan Maintenance,” J. Teknol. Dirgant., vol. 14, no. 1, p. 25, 2016, doi: 10.30536/j.jtd.2016.v14.a2565.

R. A. OKTIAWAN, “EKSPERIMENTAL TURBIN AIR SUMBU HORIZONTAL MENGGUNAKAN BILAH DATAR UNTUK SISTEM PEMBANGKIT ENERGI TERBARUKAN,” Dr. Diss. Mercu Buana Jakarta, 2021.

L. Jasa and I. P. Ardana, “Disain Turbin Model Nest-Lie Untuk Mikro Hidro,” Maj. Ilm. Teknol. Elektro, vol. 17, no. 2, p. 393, 2018, doi: 10.24843/mite.2018.v17i02.p19.

G. Pakis, D. P. Tengah, J. Moh, K. Ii, and J. J. Selatan, “Analisa Gangguan Pemutus Tenaga Mesin Cane Cutter I,” vol. 28, no. 2, pp. 1–8, 2022.

A. Alzahrani, S. K. Ramu, G. Devarajan, I. Vairavasundaram, and S. Vairavasundaram, “A Review on Hydrogen-Based Hybrid Microgrid System: Topologies for Hydrogen Energy Storage, Integration, and Energy Management with Solar and Wind Energy,” Energies, vol. 15, no. 21, 2022, doi: 10.3390/en15217979.

K. Arwizet, D. Leni, D. Aprilman, and R. Chadry, “Performance Analysis of Hydrokinetic Turbine Using Shroud Ratio Comparison under Yaw Misalignment Condition,” INVOTEK J. Inov. Vokasional dan Teknol., vol. 23, no. 1, pp. 21–32, 2023, doi: https://doi.org/10.24036/invotek.v23i1.1091.

A. C. B. Nunes, M. M., Mendes, R. C., Oliveira, T. F., & Junior, “An experimental study on the diffuser-enhanced propeller hydrokinetic turbines,” Renew. energy, vol. 133, pp. 840–848, 2019, [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/S0960148118312400

J. N. Niebuhr, C. M., Van Dijk, M., Neary, V. S., & Bhagwan, “A CCEPTED MANUSCRIPT A review of hydrokinetic turbines and enhancement techniques for canal installations : Technology , applicability and potential,” Renew. Sustain. Energy Rev., vol. 113, pp. 1–33, 2019.

G. Gish, L. A., Carandang, A., & Hawbaker, “Experimental evaluation of a shrouded horizontal axis hydrokinetic turbine with pre-swirl stators,” Ocean Eng., vol. 204, p. 107252, 2020.

Z. P. Wang, X., Yan, Y., Wang, W. Q., & Hu, “Evaluating energy loss with the entropy production theory: A case study of a micro horizontal axis river ducted turbine,” Energy Convers. Manag., vol. 276, p. 116553, 2023.

I. CHUNG, “Wind Turbine Scada Dataset,” Kaggle, 2018. https://www.kaggle.com/datasets/berkerisen/wind-turbine-scada-dataset/discussion/126962

D.Leni.et.al, “Analisis Heatmap Korelasi dan Scatterplot untuk Mengidentifikasi Faktor-Faktor yang Mempengaruhi Pelabelan AC efisiensi Energi,” J. Rekayasa Mater. Manufaktur dan Energi, vol. 6, no. 1, pp. 41–47, 2023, [Online]. Available: https://jurnal.umsu.ac.id/index.php/RMME/article/view/13133

J. Adler and I. Parmryd, “Quantifying colocalization by correlation: The pearson correlation coefficient is superior to the Mander’s overlap coefficient,” Cytom. Part A, vol. 77, no. 8, pp. 733–742, 2010, doi: 10.1002/cyto.a.20896.

R. B. Astro et al., “Potensi Energi Air Sebagai Sumber Listrik Ramah,” J. Pendidik. Fis., vol. 4, no. 2, pp. 125–133, 2020.

M. Jalalisendi, M., Zhao, S., & Porfiri, “Shallow water entry: modeling and experiments.,” J. Eng. Math., vol. 104, pp. 131–156, 2017, [Online]. Available: https://link.springer.com/article/10.1007/s10665-016-9877-3




DOI: https://doi.org/10.30596/rmme.v6i2.16190

Refbacks

  • There are currently no refbacks.


Creative Commons License

This work is licensed under a Creative Commons Attribution 3.0 License

Jurnal Rekayasa Material, Manufaktur dan Energi  is abstracting & indexing in the following databases: 

 

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Statcounter View My Stats RMME