Pemodelan Inspeksi Kerusakan Ban Mobil Menggunakan Convolutional Neural Network (CNN)
Abstract
Keywords
Full Text:
PDFReferences
D. O. T. Hs, “Traffic Safety Facts 2017,” no. March, pp. 2008–2016, 2019.
Kementrian Perhubungan, “Peraturan Menteri Perhubungan Republik Indonesia Nomor 96 Tentang Pedoman Pelaksanaan Kegiatan Manajemen dan Rekayasa Lalu Lintas,” Jakarta. pp. 1–45, 2015.
L. Puspitasari, “Analisa Performance Ban Pada Unit Produksi Overburden Hd-785 Terhadap Produktivitas Tambang Batubara,” Kurvatek, vol. 5, no. 1, pp. 69–79, 2020, doi: 10.33579/krvtk.v5i1.1775.
G. Z. Chengjun Xu, “Intelligent manufacturing Lie Group Machine Learning: real-time and efficient inspection system based on fog computing,” J. Intell. Manuf., vol. 32, no. 1, pp. 237–249, 2021, [Online]. Available: https://link.springer.com/article/10.1007/s10845-020-01570-5
J. J. Seokju Oh, Jaegyeong Cha, Donghyun Kim, “Quality Inspection of Casting Product Using CAE and CNN,” Signal Process. Commun. (ICISPC), IEEE, no. . In 2020 4th International Conference on Imaging, pp. 34–38, 2020.
S. H. P. & J. Y. Thong Phi Nguyen, Seungho Choi, Sung-Jun Park, “Inspecting Method for Defective Casting Products with Convolutional Neural Network (CNN),” Int. J. Precis. Eng. Manuf. Technol., vol. 8, pp. 583–594, 2021, [Online]. Available: https://link.springer.com/article/10.1007/s40684-020-00197-4
M. Zhang, J. Wu, H. Lin, P. Yuan, and Y. Song, “The Application of One-Class Classifier Based on CNN in Image Defect Detection,” Procedia Comput. Sci., vol. 114, pp. 341–348, 2017, doi: 10.1016/j.procs.2017.09.040.
W.-H. A. & D.-J. K. Je-Kang Park, “Convolutional Neural Network Based Surface Inspection System for Non-patterned Welding Defects,” Int. J. Precis. Eng. Manuf. Vol., vol. 20, pp. 363–374, 2019, [Online]. Available: https://link.springer.com/article/10.1007/s12541-019-00074-4
A. S. and P. D. F. Sultana, “Advancements in Image Classification using Convolutional Neural Network,” 2018 Fourth Int. Conf. Res. Comput. Intell. Commun. Networks (ICRCICN), Kolkata, India, pp. 122–129, 2018, doi: 10.1109/ICRCICN.2018.8718718.
J. Sanjaya and M. Ayub, “Augmentasi Data Pengenalan Citra Mobil Menggunakan Pendekatan Random Crop, Rotate, dan Mixup,” J. Tek. Inform. dan Sist. Inf., vol. 6, no. 2, pp. 311–323, 2020, doi: 10.28932/jutisi.v6i2.2688.
R. Zhang et al., “Automatic Detection and Classification of Colorectal Polyps by Transferring Low-Level CNN Features From Nonmedical DomainAutomatic Detection and Classification of Colorectal Polyps by Transferring Low-Level CNN Features From Nonmedical Domain,” IEEE J. Biomed. Heal. Informatics, vol. 21, no. 1, pp. 41–47, doi: 10.1109/JBHI.2016.2635662.
H. Peng, J. Li, Y. Song, and Y. Liu, “Incrementally learning the hierarchical softmax function for neural language models,” 31st AAAI Conf. Artif. Intell. AAAI 2017, pp. 3267–3273, 2017, doi: 10.1609/aaai.v31i1.10994.
D. Leni, H. Yermadona, A. Usra Berli, R. Sumiati, and H. Haris, “Pemodelan Machine Learning untuk Memprediksi Tensile Strength Aluminium Menggunakan Algoritma Artificial Neural Network (ANN),” J. Surya Tek., vol. 10, no. 1, pp. 625–632, 2023, doi: 10.37859/jst.v10i1.4843.
D. Leni, “Pemilihan Algoritma Machine Learning Yang Optimal Untuk Prediksi Sifat Mekanik Aluminium,” J. Engine Energi, Manufaktur, dan Material., vol. 7, no. 1, pp. 35–44, 2023.
A. Nur Handayani, Muladi, I. Ari Elbaith Zaeni, W. Cahya Kurniawan and R. Andrie Asmara, “Development of e-Collab Classroom for CNN Practice on Electrical Engineering, Universitas Negeri Malang,” 2020 4th Int. Conf. Vocat. Educ. Train. (ICOVET), Malang, Indones., pp. 47–51, 2020, doi: 10.1109/ICOVET50258.2020.9230345.
P. Hernández-García, A., König, “Further Advantages of Data Augmentation on Convolutional Neural Networks.,” Kůrková, V., Manolopoulos, Y., Hammer, B., Iliadis, L., Maglogiannis, I. Artif. Neural Networks Mach. Learn. – ICANN 2018. ICANN 2018. Lect. Notes Comput. Sci., vol. 11139, pp. 95–103, 2018, doi: https://doi.org/10.1007/978-3-030-01418-6_10.
C. Khosla and B. S. Saini, “Enhancing Performance of Deep Learning Models with different Data Augmentation Techniques: A Survey,” 2020 Int. Conf. Intell. Eng. Manag. (ICIEM), London, UK, pp. 79–85, 2020, doi: 10.1109/ICIEM48762.2020.9160048.
J. Wang and L. Perez, “The Effectiveness of Data Augmentation in Image Classification using Deep Learning,” arXiv Prepr. arXiv, vol. 1712.04621, 2017.
DOI: https://doi.org/10.30596/rmme.v6i2.16198
Refbacks
- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution 3.0 License
Jurnal Rekayasa Material, Manufaktur dan Energi is abstracting & indexing in the following databases:
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Statcounter View My Stats RMME