Analisis Variasi Suhu Terhadap Variasi Cahaya Pada Rancang Bangun Solar Test Simulator Menggunakan Peltier

Cholish ., Muhammad Rusdi, Rahmawaty Rahmawaty, M Anhar Pulungan, Abdul Azis, abdullah abdullah, Shahril Irawan, Zulkifli Othman

Abstract


The implementation of the Solar Panel Test Simulator design is carried out for testing in accordance with environmental temperature conditions. The difficulty of carrying out tests in actual conditions is the background for designing this tool. The intensity of heat from sunlight and also the variable ambient temperature influence the voltage released by solar panels. To obtain a solar panel voltage measurement data sheet like the situation above, it is necessary to design a simulation tool that is capable of being a reference to the actual situation. Peltier is useful for controlling temperature variations ranging from normal temperatures to below normal temperatures. Peltier is able to maintain temperature conditions until it is stable at 32 degrees Celsius by receiving light intensity. For light variations, researchers use halogen lamps which will function as heat providers. Solar light is capable of providing lighting intensity ranging from 0 - 100%. However, in this test we only use 3 conditions, namely light intensity of 30%, 60% and 100%. This test also aims to determine the effect of the voltage produced by solar panels on changes in light and also to determine the effect of the voltage produced by solar panels on changes in temperature and to determine the effect of changes in temperature on changes in light intensity. This tool is expected to be able to provide test results that can be used as a reference in measuring solar panels in real conditions.


Keywords


Solar Test Simulator, Light Variations, Solar Panels, Peltier Elements

Full Text:

PDF

References


Agostinelli, G., Batzner, D. L., & Burgelman, M. (2002). An alternative model for V, G and T dependence of CdTe solar cells IV characteristics. Proceedings of the 29th IEEE Photovoltaic Specialists Conference, 6, 744–747.

Buchroithner, A., Gerl, B., Felsberger, R., & Wegleiter, H. (2021). Design and operation of a versatile, low-cost, high-flux solar simulator for automated CPV cell and module testing. Solar Energy, 228(August), 387–404. https://doi.org/10.1016/j.solener.2021.08.068

Deepak, Srivastava, S., & Malvi, C. S. (2020). Light sources selection for solar simulators: A review. WEENTECH Proceedings in Energy, July, 28–46. https://doi.org/10.32438/wpe.060257

Fauzi, F., Tajudin, M. F. N., Mohamed, M. F., Azmi, A., & Manaf, N. A. A. (2021). Assessment of in-house build low cost solar panel simulator. Journal of Physics: Conference Series, 1878(1). https://doi.org/10.1088/1742-6596/1878/1/012038

Frolova, T. I., Churyumov, G. I., Vlasyuk, V. M., & Kostylyov, V. P. (2019). Combined Solar Simulator for Testing Photovoltaic Devices. Proceedings - 2019 IEEE 1st Global Power, Energy and Communication Conference, GPECOM 2019, 276–280. https://doi.org/10.1109/GPECOM.2019.8778607

Li, Q., Wang, J., Qiu, Y., Xu, M., & Wei, X. (2021). A modified indirect flux mapping system for high-flux solar simulators. Energy, 235, 121311. https://doi.org/10.1016/j.energy.2021.121311

Liu, G., Ning, J., Gu, Z., & Wang, Z. (2021). Stability Test on Power Supply to the Xenon Lamp of Solar Simulator. Journal of Physics: Conference Series, 1820(1). https://doi.org/10.1088/1742-6596/1820/1/012142

López-Fraguas, E., Sánchez-Pena, J. M., & Vergaz, R. (2019). A Low-Cost LED-Based Solar Simulator. IEEE Transactions on Instrumentation and Measurement, 68(12), 4913–4923. https://doi.org/10.1109/TIM.2019.2899513

Moria, H., Mohamad, T. I., & Aldawi, F. (2016). Available online www.jsaer.com Research Article Radiation distribution uniformization by optimized halogen lamps arrangement for a solar simulator. 3(6), 29–34.

Quandt, A., & Warmbier, R. (2019). Solar cell simulations made easy. International Conference on Transparent Optical Networks, 2019-July, 1–4. https://doi.org/10.1109/ICTON.2019.8840329

Rashid, M. H. (2007). Power Electronics Handbook. In Power Electronics Handbook. https://doi.org/10.1016/B978-0-12-088479-7.X5018-4

Reichmuth, S. K., Siefer, G., Schachtner, M., Muhleis, M., Hohl-Ebinger, J., & Glunz, S. W. (2020). Measurement Uncertainties in I-V Calibration of Multi-junction Solar Cells for Different Solar Simulators and Reference Devices. IEEE Journal of Photovoltaics, 10(4), 1076–1083. https://doi.org/10.1109/JPHOTOV.2020.2989144

Saadaoui, S., Torchani, A., Azizi, T., & Gharbi, R. (2014). Hybrid halogen-LED sources as an affordable solar simulator to evaluate Dye Sensitized Solar Cells. STA 2014 - 15th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering, 884–887. https://doi.org/10.1109/STA.2014.7086810

Severns, R., & Reduce, E. M. I. (2006). Design of snubbers for power circuits. International Rectifier Corporation, I. http://www.electro-tech-online.com/custompdfs/2008/02/design.pdf

Siregar, S., & Soegiarto, D. (2014). Solar panel and battery street light monitoring system using GSM wireless communication system. 2014 2nd International Conference on Information and Communication Technology, ICoICT 2014, 272–275. https://doi.org/10.1109/ICoICT.2014.6914078

Situmorang, J., & Pasasa, L. A. (2011). Pemanfaatan Karakteristik Sel Surya Sebagai Media Pembelajaran Fisika Listrik Dinamis. 2011(Snips), 22–23.

Søren Bækhøj Kjær, B. (2005). Aalborg Ph.D, Thesis - Design and Control of an Inverter for Photovoltaic Applications.

Tanesab, J., Ali, M., Parera, G., Mauta, J., & Sinaga, R. (2019). A Modified Halogen Solar Simulator. https://doi.org/10.4108/eai.18-10-2019.2289851

Tavakoli, M., Jahantigh, F., & Zarookian, H. (2021). Adjustable high-power-LED solar simulator with extended spectrum in UV region. Solar Energy, 220(February), 1130–1136. https://doi.org/10.1016/j.solener.2020.05.081

Wang, S., Jiang, W., & Lin, Z. (2015). Practical photovoltaic simulator with a cross tackling control strategy based on the first-hand duty cycle processing. Journal of Power Electronics, 15(4), 1018–1025. https://doi.org/10.6113/JPE.2015.15.4.1018

Wang, W., & Laumert, B. (2014). Simulate a ‘Sun’ for Solar Research: A Literature Review of Solar Simulator Technology. 1–37.




DOI: https://doi.org/10.30596/rmme.v7i1.17038

Refbacks

  • There are currently no refbacks.


Creative Commons License

This work is licensed under a Creative Commons Attribution 3.0 License

Jurnal Rekayasa Material, Manufaktur dan Energi  is abstracting & indexing in the following databases: 

 

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Statcounter View My Stats RMME