Teknologi Tenda Militer Portabel Berbasis Tenaga Surya Dalam Mobilisasi Taktis Tempur

Sovian Aritonang, Zaidan Al Fajri, Putry Wanda Azida, Azzahra Sandri, Muhammad Daffa Dintyra

Abstract


Indonesia's extensive geography, spanning from Sabang to Merauke, provides an uninterrupted solar energy supply, thanks to its prolonged daylight hours. This presents an excellent opportunity for the country to embrace renewable and sustainable energy, with solar power being a convenient option given Indonesia's tropical climate. The conversion of solar heat into electrical energy is an attractive proposition, allowing for the use of portable solar panels to power military vehicles while minimizing reliance on fossil fuels. Efficient energy storage solutions are needed to convert solar thermal energy into electrical energy, and sodium batteries are a more potent and eco-friendly option. Portable solar panels also offer an energy source for various military operations, such as powering tents and charging communication equipment. By incorporating solar energy into their operations, the Indonesian army can increase their capabilities while reducing their reliance on conventional energy sources. In conclusion, harnessing the abundant sunlight and tropical climate in Indonesia through portable solar panels and sodium-based batteries is a dependable and sustainable solution to meet the energy needs of military operations. This approach enables Indonesian soldiers to carry out their missions efficiently while minimizing environmental impacts.


Keywords


Perovskite, Solar cells, Tent, Automatic Transfer Switch, Military

Full Text:

PDF

References


M. Azhar and D. A. Satriawan, “Implementasi Kebijakan Energi Baru dan Energi Terbarukan Dalam Rangka Ketahanan Energi Nasional,” Administrative Law and Governance Journal, vol. 1, no. 4, pp. 398–412, 2018.

R. Hartono, F. Noor, and E. Kurnia, “Perancangan Dan Pembuatan Mobil Sel Surya Menggunakan Motor DC Magnet Permanen,” Jurnal Ilmiah Ilmu-Ilmu Teknik, vol. 6, no. 1, 2016.

D. Remme and J. Jackson, “Green mission creep: The unintended consequences of circular economy strategies for electric vehicles,” J Clean Prod, vol. 394, p. 136346, Mar. 2023, doi: 10.1016/J.JCLEPRO.2023.136346.

K. Witkowski, “Internet of Things, Big Data, Industry 4.0 – Innovative Solutions in Logistics and Supply Chains Management,” Procedia Eng, vol. 182, pp. 763–769, Jan. 2017, doi: 10.1016/J.PROENG.2017.03.197.

X. Hu, Z. Zhu, L. Gao, S. Wang, and R. Zhou, “Consumers’ value perceptions and intentions to purchase electric vehicles: A Benefit-risk analysis,” 2022.

S. Khan, K. Sudhakar, and M. H. bin Yusof, “Comparison of mono and bifacial modules for building integration and electric vehicle charging: A case study in Sweden,” Energy Conversion and Management: X, vol. 20, p. 100420, Oct. 2023, doi: 10.1016/J.ECMX.2023.100420.

M. Aziz, Y. Marcellino, I. Agnita Rizki, S. Anwar Ikhwanuddin, and J. Welman Simatupang, “STUDI ANALISIS PERKEMBANGAN TEKNOLOGI DAN DUKUNGAN PEMERINTAH INDONESIA TERKAIT MOBIL LISTRIK,” TESLA , vol. 22, no. 1, pp. 45–55, 2020.

S. Ramli et al., “ELECTRICAL ENERGY MONITORING SYSTEM FROM SOLAR PANEL ARTICLE INFO ABSTRACT,” Defence Science, Engineering& Technology, vol. 5, no. 2, pp. 20–26, 2022, doi: 10.58247/jdset-2022-0501-03.

L. B. Setyawan, “Perkembangan dan Prospek Sel Fotovoltaik Organik: Sebuah Telaah Ilmiah,” Techné Jurnal Ilmiah Elektroteknika, vol. 17, no. 2, pp. 93–100, 2018.

A. Jannat, M. Rahman, M. Saddam, H. Khan, and M. F. Rahman, “A Review Study of Organic Photovoltaic Cell,” Int J Sci Eng Res, vol. 4, no. 1, pp. 1–6, 2013, [Online]. Available: http://www.ijser.org

Askari. M. Bagher, “Introduction to Organic Solar Cells,” Sustainable Energy, vol. 2, no. 3, pp. 85–90, 2014, doi: 10.12691/RSE-2-3-2.

J. Zhang, W. Zhang, H. M. Cheng, and S. R. P. Silva, “Critical review of recent progress of flexible perovskite solar cells,” Materials Today, vol. 39, pp. 66–88, Oct. 2020, doi: 10.1016/J.MATTOD.2020.05.002.

B. J. Kim et al., “Highly efficient and bending durable perovskite solar cells: Toward a wearable power source,” Energy Environ Sci, vol. 8, no. 3, pp. 916–921, Mar. 2015, doi: 10.1039/c4ee02441a.

J. Xu, Z. Ku, Y. Zhang, D. Chao, and H. J. Fan, “Integrated Photo-Supercapacitor Based on PEDOT Modified Printable Perovskite Solar Cell,” Adv Mater Technol, vol. 1, no. 5, Aug. 2016, doi: 10.1002/admt.201600074.

S. H. Chan, Y. H. Chang, and M. C. Wu, “High-performance perovskite solar cells based on low-temperature processed electron extraction layer,” Frontiers in Materials, vol. 6, no. 57. Frontiers Media S.A., pp. 1–7, Mar. 08, 2019. doi: 10.3389/fmats.2019.00057.

B. Widyolar, L. Jiang, Y. Bhusal, J. Brinkley, and R. Winston, “Solar thermal process heating with the external compound parabolic concentrator (XCPC) – 45 m2 experimental array performance, annual generation (kWh/m2-year), and economics,” Solar Energy, vol. 230, pp. 131–150, Dec. 2021, doi: 10.1016/J.SOLENER.2021.10.027.

F. Qin et al., “Design of high efficiency perovskite solar cells based on inorganic and organic undoped double hole layer,” Solar Energy, vol. 262, p. 111796, Sep. 2023, doi: 10.1016/J.SOLENER.2023.111796.

Z. Qiao et al., “Inorganic tin-based perovskite solar cells: Modeling and performance analysis of hole transport layer-free structures,” Chem Phys Lett, vol. 813, p. 140295, Feb. 2023, doi: 10.1016/J.CPLETT.2022.140295.

Y. Y. Wang et al., “Recent advances in non-metal doped titania for solar-driven photocatalytic/photoelectrochemical water-splitting,” Journal of Energy Chemistry, vol. 66, pp. 529–559, Mar. 2022, doi: 10.1016/J.JECHEM.2021.08.038.

G. Gudipudi, P. C. Nikhil, T. V. Sai, and A. Thakur, “Comparative Analysis of FIR Filter Design using Different Multipliers and CLA adder,” International Research Journal of Modernization in Engineering Technology and Science, vol. 5, no. 6, pp. 4816–4826, Aug. 2023, doi: 10.56726/irjmets42181.

L. Li, S. Zhang, Z. Yang, E. E. S. Berthold, and W. Chen, “Recent advances of flexible perovskite solar cells,” Journal of Energy Chemistry, vol. 27, no. 3, pp. 673–689, May 2018, doi: 10.1016/J.JECHEM.2018.01.003.

R. R. Van Amber, “Apparel and Household Textiles and Their Role in Forensics,” Forensic Textile Science, pp. 15–26, Jan. 2017, doi: 10.1016/B978-0-08-101872-9.00002-9.

B. Behram, S. Ahmad, A. Shoukat, and S. S. Khan, “Fabrication of Three-phase Automatic Transfer Switching System with Reduced Switching Time,” in 16th International Conference on Emerging Technologies (ICET), 2021.

X. Zeng et al., “Commercialization of Lithium Battery Technologies for Electric Vehicles,” Advanced Energy Materials, vol. 9, no. 27. Wiley-VCH Verlag, Jul. 19, 2019. doi: 10.1002/aenm.201900161.

E. P. Mesakh, M. Napitupulu, and S. T. Gonggo, “PENGARUH ALUMINA TERHADAP MEMBRAN BLEND KITOSANPOLIVINIL ALKOHOL- LITIUM SEBAGAI MEMBRAN ELEKTROLIT BATERAI,” Jurnal Akademika Kimia, vol. 6, no. 2, pp. 72–78, 2017.

N. Apriyani, “Industri Batik: Kandungan Limbah Cair dan Metode Pengolahannya,” MITL Media Ilmiah Teknik Lingkungan, vol. 3, no. 1, pp. 21–29, 2018.




DOI: https://doi.org/10.30596/rmme.v7i1.17288

Refbacks

  • There are currently no refbacks.


Creative Commons License

This work is licensed under a Creative Commons Attribution 3.0 License

Jurnal Rekayasa Material, Manufaktur dan Energi  is abstracting & indexing in the following databases: 

 

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Statcounter View My Stats RMME