Tinjauan Material High-Performance sebagai Nosel Roket: Nickel Superalloy, Refractory Metals, CMCs, dan C-C Composites
Abstract
The advancement of rocket propulsion technology relies heavily on the development and optimization of high-performance materials capable of withstanding the extreme conditions inside rocket nozzles. This review comprehensively discusses four major material classes for rocket nozzles: Nickel-Based Superalloys, Refractory Metals, Ceramic Matrix Composites (CMCs), and Carbon-Carbon (C-C) Composites. This review highlights the unique properties, advantages, and limitations of each material in rocket nozzle applications using the Systematic Literature Review research method. Nickel-Based Superalloys are renowned for their outstanding high-temperature strength and oxidation resistance, but face challenges in terms of density and cost, thus requiring improvements in composition and processing techniques. Refractory Metals such as tungsten, molybdenum, and tantalum have very high melting points and thermal conductivity, but brittleness and oxidation at high temperatures are major constraints, requiring further research into coatings and alloying strategies. CMCs, mainly based on silicon carbide (SiC), offer high thermal stability, low density, and resistance to thermal shock. However, CMCs materials are also prone to oxidation at high temperatures and rely heavily on fiber-matrix interactions, requiring exploration of manufacturing methods for structural integrity under dynamic thermal loads. Whereas, C-C Composites excel in thermal resistance and light weight, ideal for nozzle throats and exit cones, they are prone to oxidation, requiring protective coatings and treatments to enhance their longevity in oxidative environments.
Keywords
Full Text:
PDFReferences
J. Stephenson, “Design of Nozzle for High-Powered Solid Rocket Propellant,” Undergrad. J. Math. Model. One + Two, vol. 9, no. 1, 2018, doi: 10.5038/2326-3652.9.1.4895.
M. Dito Saputra and N. Andria, “Design Optimization of A Conventional Rocket Nozzle Using Coupled Thermo-Structural Analysis,” J. Teknol. Dirgant., vol. 19, no. 2, pp. 157–168, 2021.
R. D’Elia, G. Bernhart, J. Hijlkema, and T. Cutard, “Experimental analysis of SiC-based refractory concrete in hybrid rocket nozzles,” Acta Astronaut., vol. 126, pp. 168–177, 2016, doi: 10.1016/j.actaastro.2016.04.034.
M. K. Linnenluecke, M. Marrone, and A. K. Singh, “Conducting systematic literature reviews and bibliometric analyses,” Aust. J. Manag., vol. 45, no. 2, pp. 175–194, 2020, doi: 10.1177/0312896219877678.
A. M. T. Thomé, L. F. Scavarda, and A. J. Scavarda, “Conducting systematic literature review in operations management,” Prod. Plan. Control, vol. 27, no. 5, pp. 408–420, 2016, doi: 10.1080/09537287.2015.1129464.
D. G. Moher, D., Liberati, A., Tetzlaff, J., & Altman, “Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement,” Int J Surg, vol. 8, no. 5, pp. 336–341, 2010.
B. C. O’Brien, I. B. Harris, T. J. Beckman, D. A. Reed, and D. A. Cook, “Standards for reporting qualitative research: A synthesis of recommendations,” Acad. Med., vol. 89, no. 9, pp. 1245–1251, 2014, doi: 10.1097/ACM.0000000000000388.
A. Morad and Y. Shash, “Nickel Base Superalloys Used for Aero Engine Turbine Blades,” Int. Conf. Appl. Mech. Mech. Eng., vol. 16, no. 16, pp. 1–22, 2014, doi: 10.21608/amme.2014.35549.
I. Waugh, E. Moore, A. Greig, J. Macfarlane, and W. Dick-cleland, “Additive Manufacture of Rocket Engine Combustion Chambers Using the Abd R -900Am Nickel Superalloy,” SP2020 Virtual Conf. 17-19 March, no. March, pp. 1–9, 2021.
R. Ruzuqi, D. D. I. Rudyardjo, M.Si., and A. H. Zaidan, S.Si., M.Si., Ph.D., “Synthesis and Characterization of Nickel-Based Superalloy Materials for Manufacturing Aircraft Turbine Blades,” Indones. Appl. Phys. Lett., vol. 2, no. 2, p. 49, 2021, doi: 10.20473/iapl.v2i2.31557.
D.P. Sudhakar, V. Vinodh Babu, Abhay K. Jha, M. Rajmohan, and A.E. Muthunayagam, “Optimisation of Vacuum Brazing Conditions for Joining Stainless Steel 321 Sheets by Nickel Based Braze Foil for Regenerative Rocket Nozzle Applications by Taguchi Method,” J. Aerosp. Sci. Technol., vol. 63, no. 3, pp. 230–237, 2023, doi: 10.61653/joast.v63i3.2011.542.
M. Nathal, J. Gayda, and R. D. Noebe, “NiAl-Based Approach For Rocket Combustion Chambers,” United States Pat., vol. 1, no. 12, 2005.
P. Thakre and V. Yang, “Chemical erosion of refractory-metal nozzle inserts in solid-propellant rocket motors,” J. Propuls. Power, vol. 25, no. 1, pp. 40–50, 2009, doi: 10.2514/1.37922.
B. T. Sofyan, C. C. Berndt, M. Stefano, and H. J. Pardede, “WC-Co coatings for high temperature rocket nozzle applications: An applications note,” Int. J. Technol., vol. 1, no. 1, pp. 48–56, 2010.
D. Y. Park, Y. J. Oh, Y. S. Kwon, S. T. Lim, and S. J. Park, “Development of non-eroding rocket nozzle throat for ultra-high temperature environment,” Int. J. Refract. Met. Hard Mater., vol. 42, pp. 205–214, 2014, doi: 10.1016/j.ijrmhm.2013.09.007.
G. Solomon and Y. AlemayehuAdde, “Design and analysis of rocket nozzle,” IOSR J. Eng., vol. 10, no. 5, pp. 20–30, 2020, doi: 10.1016/j.matpr.2020.10.370.
M. Ortelt, F. Breede, A. Herbertz, D. Koch, and H. Hald, “Current activities in the field of ceramic based rocket engines,” Ger. Aerosp. Cent., pp. 1–10, 2013.
O. J. Haidn, J. Riccius, D. Suslov, S. Beyer, and O. Knab, “Development of technologies for a CMC-based combustion chamber,” Prog. Propuls. Phys., vol. 1, no. 2009, pp. 645–658, 2009, doi: 10.1051/eucass/200901645.
F. Breede and M. Frieß, “Development of Advanced CMC Materials for Dual-bell Rocket Nozzles,” SFB/TRR40 Annu. Rep. 2009, no. May, pp. 307–315, 2009.
D. Sciti et al., “Propulsion tests on ultra-high-temperature ceramic matrix composites for reusable rocket nozzles,” J. Adv. Ceram., vol. 12, no. 7, pp. 1345–1360, 2023, doi: 10.26599/JAC.2023.9220759.
S. Shrivastava, D. K. Rajak, T. Joshi, D. K. Singh, and D. P. Mondal, “Ceramic Matrix Composites: Classifications, Manufacturing, Properties, and Applications,” Ceramics, vol. 7, pp. 652–679, 2024.
D. Bianchi, F. Nasuti, M. Onofri, and E. Martelli, “Thermochemical erosion analysis for graphite/carbon-carbon rocket nozzles,” J. Propuls. Power, vol. 27, no. 1, pp. 197–205, 2011, doi: 10.2514/1.47754.
M. Fradin, G. L. Vignoles, F. Rebillat, K. Haras, and C. Grégis, “Oxidation behavior of nozzle throat carbon/carbon composites featuring variable densities,” 9TH Eur. Conf. Aeronaut. Sp. Sci., 2021, doi: 10.13009/EUCASS2022-5869.
G. L. Vignoles, Y. Aspa, and M. Quintard, “Modelling of carbon-carbon composite ablation in rocket nozzles,” Compos. Sci. Technol., vol. 70, no. 9, pp. 1303–1311, 2010, doi: 10.1016/j.compscitech.2010.04.002.
K. Z. Li, X. T. Shen, H. J. Li, S. Y. Zhang, T. Feng, and L. L. Zhang, “Ablation of the carbon/carbon composite nozzle-throats in a small solid rocket motor,” Carbon N. Y., vol. 49, no. 4, pp. 1208–1215, 2011, doi: 10.1016/j.carbon.2010.11.037.
G. Vinod, S. Renjith, and V. Thaddeus Basker, “Thermo Structural Analysis of Carbon-Carbon Nozzle Exit Cone for Rocket Cryo Engines,” Appl. Mech. Mater., vol. 877, pp. 320–326, 2018, doi: 10.4028/www.scientific.net/amm.877.320.
K. S. Kim, S. H. Lee, V. Q. Nguyen, Y. Yun, and S. Kwon, “Ablation characteristics of rocket nozzle using HfC-SiC refractory ceramic composite,” Acta Astronaut., vol. 173, no. March, pp. 31–44, 2020, doi: 10.1016/j.actaastro.2020.03.050.
S. Dhanasekar et al., “A Comprehensive Study of Ceramic Matrix Composites for Space Applications,” Adv. Mater. Sci. Eng., vol. 2022, 2022, doi: 10.1155/2022/6160591.
X. Xiong, L. Li, H. Li, and P. Zan, “Thermal Stress Analysis for Carbon/Carbon Material Throat Lining Based on Finite Element Analysis,” J. Phys. Conf. Ser., vol. 2338, no. 1, 2022, doi: 10.1088/1742-6596/2338/1/012046.
DOI: https://doi.org/10.30596/rmme.v8i1.20385
Refbacks
- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution 3.0 License
Jurnal Rekayasa Material, Manufaktur dan Energi is abstracting & indexing in the following databases:
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Statcounter View My Stats RMME