Comparison of Newton Raphson Method and Ridge Method In Probit Regression Parameter Estimation

Yastri Yastri, Rahmawati Pane

Abstract


Probit regression model is a non-linear model used in the process of analyzing the relationship between a response variable that has categorical properties. The problem that is very often experienced in probit regression when the predictor variable consists of one or more is that there is a very high correlation between predictor variables called multicollinearity. To overcome this, the Newton Raphson method and the Rigde method are used. So this research was conducted to compare the Newton Raphson method and the Ridge method in the estimation of the Probit Regression parameter. The data used in this research is 1000 data generation that contains multicollinearity. Based on this research, the estimated mean square error of the Probit Regression model using the Newton Raphson method is 0.488. The estimation result of the mean square error of the Probit Regression model using the Ridge method is 0.488. The results of this study indicate that the estimation of the Probit Regression parameter using the Newton Raphson method is as good as the Ridge method. This can be seen from the estimated value of MSE using the Newton Raphson method and the Ridge method. This can happen due to the small value of the langrage multiplier obtained, so it does not have an impact on the model obtained.


Keywords


newton raphson method, parameter estimation, probit regression, ridge method

Full Text:

PDF

References


Candra Y. (2009). Pembentukan Model Probit Bivariat. Semarang: Universitas Diponegoro

Chatterjee S, Hadi AS. (2006) Regression Analysis by Example. 4 ed. USA: John Wiley & Sons

Ghozali, Imam. (2011). Aplikasi AnalisisMultivariate dengan Program IBMSPSS 21. Semarang: Badan PenerbitUniversitas Diponegoro.

Gujarati DN. (2006). Dasar Dasar Ekonometrika Jilid I. Jakarta: Erlangga.

Hastie Te. (2008). The Elemen of StatisticalLearning. Data Mining, Inference, andprediction. Edisi Kedua. New York:Spring.

Hoerl AE, Kennard RW. (1970). Ridge regression: Biased estimation for nonorthogonal problems. Technometrics, 12(1), 55-67.

Pratiwi N. (2016). Perbandingan RegresiKomponen Utama dengan RegresiRidge untuk Mengatasi MasalahMultkikolinearitas. Skripsi S1.Semarang: Fakultas Matematika danIlmu Pengetahuan Alam UniversitasNegeri Semarang.

Saleh AME, Arashi M, Kibria BG. (2019). Theory of ridge regression estimation with applications (Vol. 285). John Wiley & Sons.

Setiawan, Kusrini DE. (2010).Ekonometrika. Yogyakarta: Andi

Sunyoto. (2009). Regresi Logistik Ridge : Pada Keberhasilan Siswa SMA Negeri 1 Kediri Diterima Di Perguruan Tinggi Negeri. Surabaya: Institut Teknologi Sepuluh Nopember

Supranto J. (2005). Ekonometri Buku I. Bogor: Ghalia Indonesia

Suryaningrum KM, W SP. (2015). Analisis dan Penerapan Metode Single Exponential SmoothinguntukPrediksi Penjualan pada Periode Tertentu (Studi Kasus: PT. Media Cemara Kreasi). Prosiding Senatif, (2), 259–266.

Storvik G. (2011). Numerical optimization of likelihoods: additiona literature for STK2120. University of Oslo

Wasilane Te. (2014). Model Regresi Ridge Untuk Mengatasi Model Regresi Linier Berganda Yang Mengandung Multikolinearitas. Jurnal Barekeng, 31- 37

Widhiarso W. (2012). Berkenalan dengan Regresi Probit. Yogyakarta: Universitas Gadjah Mada.




DOI: https://doi.org/10.30596/jmea.v2i3.13327

Refbacks

  • There are currently no refbacks.


 

 

Journal of Mathematics Education and Application: JMEA

University Muhammadiyah of Sumatera Utara

Magister Pendidikan Matematika Program Pascasarjana Universitas Muhammadiyah Sumatera Utara, Jl. Denai No 217, Indonesia

email: jmea@umsu.ac.id