Zero-Inflated Poisson Regression Testing In Handling Overdispersion On Poisson Regression
Abstract
The classical linear regression analysis is an analysis aimed at knowing the relationship between the response variables and the explanatory variables assuming the normal distribution data, but in the applied data is often not the case. Generalized Linear Model (GLM) was developed for data in the form of categorical and discrete distribution. In this study the data was raised which has a poisson distribution by as much as n, with average λ and the odds appearing zero p. Poisson regression is GLM for Poisson-distributed data assuming that Var(X ) = E(X ), but asusumption is rare in applied data. For rare occurrences of a specified interval X variables are often zero-valued, thus causing overdispersion (Var(X ) > E(X )). Lambert (1992) introduced a method for overcoming overdispersion in poisson regression i.e. the Zero-Inflated Poisson regression (ZIP). In this research conducted a ZIP regression test in overcoming overdispersion to see the opportunity limit p appears zero- valued as the value that causes overdispersion. Testing is done with RStudio ver. 1.1.463.0 software. Based on the simulated data obtained that Regression ZIP stopped overcoming overdis persion at the condition n = 500, λ = 0.7 with the odds p = 0.2 with a dispersion ratio of τ = 1.010.
Keywords
Full Text:
PDFReferences
Agresti, An Introduction to Categorical Data Analysis second edition. New Jersey: Jon Wiley and Sons, 2007.
D. Lambert, “Zero-inflated poisson regression, with an application to defects in manufactur ing,” Technometrics, vol. 34, no. 1, pp. 1–14, 1992.
N. P. P. Dewanti, M. Susilawati, and I. G. A. M. Srinadi, “Perbandingan regresi zero inflated poisson (zip) dan regresi zero inflated negative binomial (zinb) pada data overdispersion (studi kasus: Angka kematian ibu di provinsi bali),” E-Jurnal Matematika, vol. 5, no. 4, pp. 133–138, 2016.
D. Downing and J. Clark, Statistics the easy way. Univ of California Press, 1997.
M. Pateta, Fitting Poisson Regression Models Using the Genmod Procedure, USA: SAS Institute Inc, 2005.
P. McCullagh and J. A. Nelder, Generalized linear models. Chapman and Hall. London, UK: Chapman and Hall, 1989.
V. Ricci, “Fitting distributions with R, ”Contributed Documentation available on CRAN, vol. 96, pp. 1–24, 2005.
A. C. Cameron and P. K. Trivedi, Regression analysis of count data. Cambridge university press, 2013, vol. 53.
M. H. Degroot and M. J. Schervish, Probability and Statistics Fourth Edition. Boston: Pearson Education In, 2012.
I. M. Nur, et al, “Penerapan Generalized Poisson Regression I untuk Mengatasi Overdispersi pada Regresi Poisson (Studi Kasus: Pemodelan Jumlah Kasus Kanker Serviks di Provinsi Kalimantan Timur)”, Jurnal Eksponensial, vol. 7, no. 1, pp. 59-77, 2016.
A. Lestari, et al, “Pemodelan Regresi Zero-Inflated Poisson (Aplikasi pada Data Pekerja Seks Komersial di Klinik Reproduksi Putat Surabaya)”, Phytagoras, vol. 5, no. 2, pp. 57-72, 2009.
L. P. Rahayu, “Kajian Overdispersi pada Regreasi Poisson dan Zero-Inflated Poisson untuk Beberapa Karakteristik Data [tesis]”. Bogor: Institut Pertanian Bogor, 2014.
D. Karlis and I. Ntzoufras, “Bivariate Poisson and diagonal inflated bivariate Poisson regression models in R,” Journal of Statistical Software, vol. 14, no. 10, pp. 1–36, 2005.
DOI: https://doi.org/10.30596/jmea.v2i2.13591
Refbacks
- There are currently no refbacks.
Journal of Mathematics Education and Application: JMEA
University Muhammadiyah of Sumatera Utara
Magister Pendidikan Matematika Program Pascasarjana Universitas Muhammadiyah Sumatera Utara, Jl. Denai No 217, Indonesia
email: jmea@umsu.ac.id