Accuracy of the Moving Averages and Deseasonalizing Methods for Trend, Cyclical and Seasonal Data Forecasting

Yoga Fromega Saragih, Open Darnius

Abstract


Forecasting or forecasting is an attempt to predict future conditions based on past state data. Moving Averages or moving average is a forecasting method that calculates the average value of a time series and then uses it to estimate the value in the next period. Deseasonalizing is part of the decomposition method which is included in the time series method. In this study, the Moving Average method and the Deseasonalizing method were used. The use of these two forecasting methods is to determine the accuracy of the forecasting method which is more accurate and close to the Mean Absolute Error (MAE) and Mean Squared Error (MSE) values. In this study the procedures used were problem identification, problem formulation, observation, data analysis and conclusion. The data taken in this study is data that contains trend, cyclical, and seasonal. For data containing trends on the moving averages method 15245.28 and 1430419308, for the Deseasonalizing method 28121.9504 and 1204814887. For Cyclical data on the Moving Averages method 4454.314465 and 28200197.22 for the Deseasonalizing method 13357.71283 and 254833253.4. For Seasonal data on Moving Averages 126.3839286 and 25479.38393 for the Deseasonalizing method 244.9971767 and 75372.32397. And for data containing these three patterns in the Moving Averages method 193.5385 and 65781.02 for the Deseasonalizing method 901.9566 and 1351418. From these results it can be concluded that the most effective trend data is the Deseasonalizing method, for Seasonal data the most effective method is the Moving Averages method, and for Cyclical Data the most effective method is the Moving Averages. Meanwhile, for data containing the three data patterns is the Moving Averages method.


Keywords


Moving Averages, Deseasonalizing, Method effectiveness

Full Text:

PDF

References


Makridakis, S. Dkk. 1999. Metode dan Aplikasi Peramalan. Terjemahan Untung Sus Andriyanto dan abdul basith. Jakarta: Erlangga.

Hanke,Winchern, 2005. Time series atau runtun waktu adalah himpunan observasi data terurut dalam waktu.

Mason, D. Dkk. 1999. Teknik Statistika untuk Bisnis & Ekonomi. Terjemahan Widyono Soetjipto, dkk. Jakarta: Erlangga.

Subagyo, Pangestu. 1986. Forecasting Konsep dan aplikasi. Yogyakarta: BPFE Yogyakarta.

Supranto, J. 2000. Statistik Teori dan Aplikasi. Jakarta: Erlangga

Maricar, Azman,M, Widiadnyana Putu and Wijaya Wayan Arta. (2017) Analysis of Data Mining for Forecasting, vol. 2, No. 1.

Marlina Marine,Keristina Br. Ginting, Ariyanto “Peramalan Jumlah Penumpang Pesawat Dengan Menggunakan Metode Dekomposisi, Vol. 01, No. 01, November 2019.

Makridakis, S., & S. C., W. (1989). Forecasting Methods for Management.

Mardhiyah, R. (2016). Perbandingan Metode Double Exponential Smoothing dan Fuzzy Time Series Pada Peramalan Penjualan.

Mursidah, Yunina, Nurhasanah Desma Yuni (2021) Perbandingan Metode Exponential Smoothing dan Metode Decomposition. Vol 10, Nomor 1, ISSN : 2338-2864 p. 37-46.

Rachman Rizal, (2018) Penerapan Metode Moving Average dan Exponential Smoothing. Vol.5 No.1 September 2018, pp. 211~220.

Makridakis, S, Wheelwright, S.C., & McGee, V.E. 1999. Metode dan Aplikasi Peramalan, jilid 1, edisi revisi (terj.), Alih Bahasa: Hari Suminto. Jakarta: Binarupa Aksara.

Bank BRI. (2016). Dipetik May 25, 2015, dari http://bri.co.id/ar




DOI: https://doi.org/10.30596/jmea.v2i3.13735

Refbacks

  • There are currently no refbacks.


 

 

Journal of Mathematics Education and Application: JMEA

University Muhammadiyah of Sumatera Utara

Magister Pendidikan Matematika Program Pascasarjana Universitas Muhammadiyah Sumatera Utara, Jl. Denai No 217, Indonesia

email: jmea@umsu.ac.id