Exploring Semantic Equivalence in the Translation of the Putri Hijau Legend

Putri Rizki Syafrayani, Meisuri Meisuri, Riska Ayunda, Merry Luz Molina

Abstract


This study investigates the capabilities of neural machine translation (NMT) tools, Google Translate and DeepL, in translating culturally rich texts, with a focus on the Putri Hijau legend. Using Newmark’s Semantic Translation Theory, the research evaluates the translation of idiomatic expressions, metaphors, and culturally embedded terms to determine the semantic fidelity and cultural appropriateness of each tool. The findings reveal that DeepL outperforms Google Translate in preserving contextual and pragmatic nuances, particularly in idiomatic expressions and culturally specific terms, aligning more closely with semantic translation principles. However, both tools face significant challenges in translating metaphors, often resorting to literal interpretations that fail to capture the symbolic and poetic elements of the original text. The study highlights the limitations of current NMT tools in rendering complex cultural and figurative content accurately and underscores the importance of cultural understanding in translation. While DeepL demonstrates greater effectiveness, the research concludes that NMT tools should be used as supplementary aids rather than standalone solutions for culturally significant texts. Recommendations include further refinement of AI models to enhance their ability to handle figurative language and cultural nuances. These findings provide valuable insights for improving NMT technology and its application in translating culturally sensitive materials.

Keywords


Culturally embedded terms; idiomatic expressions; metaphors; Neural Machine Translation (NMT); Putri Hijau legend

Full Text:

PDF

References


Apriyanti, T., Wulandari, H., Safitri, M., & Dewi, N. (2017). Translating Theory of English into Indonesian and Vice-Versa. Indonesian Journal of English Language Studies (IJELS), 2(1), 22. https://doi.org/10.24071/ijels.v2i1.350

Arivazhagan, N., Bapna, A., Firat, O., Lepikhin, D., Johnson, M., Krikun, M., Chen, X. M., Cao, Y., Foster, G., Cherry, C., Macherey, W., Chen, Z., & Wu, Y. (2019). Massively Multilingual Neural Machine Translation in the Wild: Findings and Challenges. Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, 89–101.

Asscher, O. (2023). The Position of Machine Translation in Translation Studies: A Defitional Perspective. Translation Spaces, 12(1), 1–20.

Auni, L., & Manan, A. (2023). A Contrastive Analysis of Morphological and Syntactic Aspects of English and Indonesian Adjectives. Studies in English Language and Education, 10(1), 403–423. https://doi.org/10.24815/siele.v10i1.27401

Ayton, D., Tsindos, T., & Berkovic, D. (2023). Chapter 5: Qualitative descriptive research. In Qualitative Research – A practical guide for health and social care researchers and practitioners. Monash University.

Babhulgaonkar, A. R., & Bharad, S. V. (2017). Statistical Machine Translation. International Conference on Intelligent Systems and Information Management (ICISIM), 62–67. https://doi.org/10.1109/ICISIM.2017.8122149

Baker, M. (2018). In other words: A coursebook on translation (3rd ed.). Routledge.

Charles-Kenechi, S. (2024). Artificial Intelligence in Education: Benefits and Challenges. Cascades, Journal of the Department of French and International Studies, 2(1), 5–15.

Hardmeier, C. (2012). Discourse in Statistical Machine Translation. Discours, 11. https://doi.org/10.4000/discours.8726

He, D., Xia, Y., Qin, T., & Wang, L. (2016). Dual Learning for Machine Translation. Advances in Neural Information Processing Systems, 29.

Isa, A. A. (2002). Putri Hijau. Pusat Bahasa.

Isnawati, R., & Hidayat, M. (2020). The Need for Specialized Translation Resources for Indonesian Languages. Translation Technology Quarterly, 9(3), 87–104.

Khasawneh, M. A. S., & Al-Amrat, M. G. R. (2023). Evaluating the Role of Artificial Intelligence in Advancing Translation Studies: Insights from Experts. Migration Letters, 20(S2), 932–943.

Koehn, P. (2010). Statistical Machine Translation. Cambridge University Press.

Latranita, E., Sembiring, M., & Sitinjak, V. N. (2024). The Art of Translating Indonesian Folklore: A Case Study of “Hasil Sebuah Kejujuran” by Bambang Subagyo”. Journal of Applied Linguistics, 4(1), 32–40. https://doi.org/10.52622/joal.v4i1.219

Lauder, M. R. M. T. (2006). Obstacles to Creating an Inventory of Languages in Indonesia: A Dialectology Perspective. In D. Cunningham, D. E. Ingram, & K. Sumbuk (Eds.), Language Diversity in the Pacific Endangerment and Survival. UNESCO Etxea.

Lopez, A. (2008). Statistical Machine Translation. ACM Computing Surveys (CSUR), 40(3), 1–49.

M, P. L. (2022). Ethnologue: Languages of the World (25th ed.). SIL International.

Martin, S. (2024). Advancements in Neural Machine Translation : Techniques and Applications. Journal of Innovative Technologies, 7, 1–9.

Mohamed, Y. A., Khanan, A., Bashir, M., Mohamed, A. H. H. M., Adiel, M. A. E., & Elsadig, M. A. (2024). The Impact of Artificial Intelligence on Language Translation: A Review. IEEE Access, 12(January), 25553–25579. https://doi.org/10.1109/ACCESS.2024.3366802

Newmark, P. (1988). A Textbook of Translation. Prentice Hall.

Nida, E. A., & Taber, C. R. (2003). The theory and practice of translation (2nd ed.). Brill.

Okpor, M. D. (2014). Machine Translation Approaches. 11(5), 159–165.

O’Brien, S. (2012). Machine translation and global content strategies. In C. Sin-wai (Ed.), The Routledge handbook of translation studies (pp. 503–518). Routledge.

Pym, A. (2010). Exploring translation theories. Routledge.

Saldanha, G., & O'Brien, S. (2013). Research methodologies in translation studies. Routledge.

Singh, M., Kumar, R., & Chana, I. (2019). Improving Neural Machine Translation Using Rule-Based Machine Translation. 2019 7th International Conference on Smart Computing and Communications, ICSCC 2019, 1–5. https://doi.org/10.1109/ICSCC.2019.8843685

Sofyan, R., & Rosa, R. N. (2021). Problems and Strategies in Translating Legal Texts. Humanus, 20(2), 221. https://doi.org/10.24036/humanus.v20i2.112233

Stahlberg, F. (2020). Neural machine translation: A review. Journal of Artificial Intelligence Research, 69, 343–418. https://doi.org/10.1613/JAIR.1.12007

Sumarni, L. (2016). Translation: From Theory to Practice. In Know (1st Editio, Vol. 7, Issue 2). Sanata Dharma University Press.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., & Kaiser, L. (2017). Attention is All You Need. 31st Conference on Neural Information Processing Systems (NIPS 2017).




DOI: https://doi.org/10.30596/etlij.v6i2.22012

Refbacks

  • There are currently no refbacks.


Creative Commons License

This work is licensed under a Creative Commons Attribution 3.0 License

ISSN: 2716-0831